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Введение. Одной из ключевых задач для сейсморазведки является прогноз геологического строения 
изучаемых пластов. В частности, оценка мощности коллекторов на основании имеющейся скважинной 
статистики. Подобная задача является стандартной в рамках динамического анализа волнового 
поля и зачастую решается путем построения прогнозной модели на основании имеющейся геолого-
геофизической информации, в том числе по известным значениям эффективной мощности в скважинах.
Цель. Оценка эффективности методов машинного обучения при решении задачи прогноза мощности 
коллекторов по данным сейсморазведки. Современный анализ данных зачастую использует эту категорию 
методов для построения различных прогнозных моделей. Сейсмическая интерпретация, в свою очередь, 
связана с использованием относительно простых линейных моделей. Это делает актуальным определение 
прироста качества от использования сложных моделей предсказания.
Материалы и методы. Для исследования использован относительно хорошо изученный бурением участок 
одного из месторождений в Западной Сибири. Рассматриваемая территория полностью покрыта данными 
3D-сейсморазведки, для построения модели имеются 170 скважин, в которых определено значение 
эффективной мощности.
В рамках исследования рассмотрен как стандартный подход с применением линейной регрессии, так 
и более сложные алгоритмы машинного обучения, такие как многомерная регрессия, метод случайного 
леса, метод ближайших соседей и нейронная сеть. Для оценки качества предсказания имеющаяся выборка 
скважин разделена на обучающую и валидационную, состоящие из 80 и 90 скважин соответственно.
Все вычисления реализованы с использованием открытых библиотек языка программирования python.
Результаты. Получены распределения ожидаемой точности прогноза для каждого из рассмотренных 
методов. В тексте статьи подробно описан алгоритм работы, а также выполненные тесты для подбора 
параметров каждого алгоритма.
Заключение. Полученные результаты позволяют сделать вывод об эффективности использования методов 
машинного обучения. Все рассмотренные сложные алгоритмы позволяют получить более точный прогноз 
эффективной мощности по сравнению с подходом линейной регрессии. Наиболее значительный прирост 
точности наблюдается при использовании нейронной сети и составляет 23 %.
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Introduction. One of the key tasks for seismic interpretation is the prediction of the geological structure of the 
studied formations. In particular, a common task is to estimate the net thickness of reservoirs based on available 
well statistics. Such a task is standard in the framework of dynamic wave field analysis and is often solved by 
constructing a predictive model based on available geological and geophysical information, including values of 
net thickness in available wells.
Goal. The purpose of the work is to evaluate the effectiveness of machine learning methods in solving the problem 
of reservoir thickness prediction based on seismic data. Modern data analysis often uses this category of methods 
to build various predictive models. Seismic interpretation, in turn, is often associated with the use of relatively simple 
linear models. This makes it relevant to determine the gain from the use of complex prediction models.

ГЕ
О

Л
О

ГИЯ


 
И

 ГЕ
О

Л
О

ГО
-

РА
ЗВ

ЕД
О

Ч
Н

Ы
Е 

РА
БО

ТЫ

mailto:butorin.av@gazpromneft-ntc.ru


24

Materials and methods. To carry out the study, a relatively well-studied area of one of the fields in Western 
Siberia was used. The territory under consideration is completely covered with 3D seismic data, there are 
170 wells for constructing the model, in which the value of net thickness is determined.
To implement the study, both a standard linear regression and more complex machine learning algorithms are 
considered. Among the algorithms, multidimensional regression, random forest method, nearest neighbor method 
and neural network are considered. To assess the quality of prediction, the available sample of wells is divided into 
training and validation samples consisting of 80 and 90 wells, respectively.
All calculations are implemented using open python programming language libraries.
Results. As a result, distributions of the expected accuracy of the forecast for each of the considered methods 
were obtained. The text of the article describes in detail the research algorithm, as well as the tests performed to 
select the parameters of each algorithm.
Conclusion. The results obtained allow us to conclude about the effectiveness of using machine-learning 
methods. All the approaches considered make it possible to obtain a more accurate prediction of the net 
thickness compared to the linear regression approach. The most significant increase in accuracy is observed 
with using a neural network and the improvement estimated as 23 %.
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Введение

Ключевой задачей интерпретации данных 
сейсморазведки является прогноз геологи-
ческих параметров среды по характеристи-
кам волнового поля. К подобным парамет-
рам могут быть отнесены: глубина залегания 
пласта, его литологический состав, песча-
нистость, пористость проницаемость, насы-
щенность. Характеристики волнового поля 
могут быть разделены на кинематические, 
связанные с временем регистрации отраже-
ния, и динамические, связанные с его энер-
гетическими параметрами. В рамках данного 
исследования рассмотрена задача прогноза 
мощности коллектора по динамическим ха-
рактеристикам волнового поля.
Выбранная задача является стандарт-
ной и выполняется в большинстве геоло-
го-геофизических проектов при наличии 
необходимой скважинной информации, 
что обуславливает актуальность данного 
исследования. Связь между параметра-
ми амплитуды и эффективной мощностью 
коллектора — хорошо изученный феномен, 
основанный на интерференции отражений. 
Одна из известных публикаций [1] наглядно 
показывает на модельных данных субли-
нейную связь между мощностью песчани-
ка с амплитудой волнового поля. В целом 
для большинства практических проектов 
подход остается схожим и заключается 
в поисках наиболее достоверной линей-
ной связи между поисковым параметром 
(эффективной толщиной) и характеристи-
кой амплитуды (атрибутом). Найденная 

функциональная связь в дальнейшем ис-
пользуется для прогноза искомого парамет-
ра в межскважинном пространстве.
С точки зрения алгоритмов машинного обу-
чения рассматриваемая задача относится 
к категории алгоритмов «обучения с учи-
телем» — априорно известные значения 
в точках скважин и набор атрибутов волно-
вого поля формируют обучающую выборку, 
которая используется для создания пред-
сказывающей модели. С этой точки зрения 
рассматриваемая геологическая задача 
является стандартной задачей регрессии 
в рамках машинного обучения, решаемая 
с помощью множества алгоритмов, реали-
зованных в различных языках программиро-
вания. В рамках данного исследования все 
вычисления выполнены с использованием 
открытых библиотек языка программирова-
ния python, в частности библиотеки sklearn, 
содержащей реализации основных алгорит-
мов машинного обучения.
В качестве объекта исследования выбран 
разбуренный участок одного из месторо-
ждений в Ханты-Мансийском автономном 
округе Западной Сибири. Целевыми пла-
стами в рамках рассматриваемого района 
являются пласты группы АС, сформированные 
в условиях мелководно-морских обстано-
вок. Развитие коллектора связано с фация-
ми аккреционной системы меандрирующего 
русла, однозначно картируемого по данным 
сейсморазведки. Всего на участке пробурено 
170 скважин, вся территория участка покрыта 
данными сейсморазведки МОГТ 3D с кратно-
стью системы наблюдения 144 (рис. 1).
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Методы

На начальном этапе имеющиеся скважины 
были разделены на две выборки: 80 сква-
жин использованы в качестве обучающего 
массива, 90 скважин исключены из процесса 
построения предсказывающей модели и ис-
пользовались на финальном этапе в качестве 
отложенной выборки для оценки качества 
каждой модели. Подобный подход является 
необходимым условием при работе с алгорит-
мами машинного обучения, наличие вали-
дационной выборки позволяет объективно 
оценить качество и проконтролировать отсут-
ствие эффекта переобучения, то есть его на-
стройки на имеющуюся обучающую выборку.
В рамках исследования рассмотрены наибо-
лее распространенные методы, доступные 
для применения в библиотеке sklearn: много-
мерная регрессия, метод случайного леса, 
метод ближайших соседей и нейронная сеть. 
Все эти методы являются хорошо известными 
и подробно описаны в научной литературе, 
по этой причине в данной работе не при-
водятся их математические формулировки 
и не описываются алгоритмы вычисления.
Для формирования обучающей выборки ис-
пользованы трассы исходного суммарного 
куба в точках скважин. Вычисление атри-
бутов для обучающей выборки выполнено 
в интервале 40 мс относительно целевого 
отражающего горизонта, соответствующе-
го кровле продуктивного пласта. В рамках 
заданного окна были вычислены стандарт-
ные атрибуты волнового поля: мгновенная 
амплитуда, а также магнитуды по частот-
ным компонентам 10, 20, 30 и 40 Гц, полу-
ченные с использованием непрерывно-
го вейвлет-преобразования по вейвлетам 
Риккера. Внутри рассматриваемого интер-
вала для оценки характеристик атрибутов 
выполнен перебор окон от 0 до 8 мс. Внутри 
каждого окна использованы различные ста-
тистические оценки: сумма, минимальное 
и максимальное значение, среднеквадра-
тическое значение. Данные вычисления вы-
полнены для каждой трассы, что позволило 
получить на выходе массив из 1800 атрибу-
тов для каждой скважины. Набор атрибутов 
и истинные значения эффективной мощно-
сти формируют входной массив для обучения 
алгоритмов.
Полученный массив значений, вычисленных 
по трассам суммарного куба, характеризует-
ся высокой степенью корреляции для не-
которых атрибутов. Данное обстоятель-
ство может негативно сказываться на ходе 
обучения некоторых алгоритмов, поэтому 
для минимизации этого фактора к атрибутам 

применен метод главных компонент. Метод 
главных компонент (PCA) позволяет получить 
некоррелируемые атрибуты, однако коли-
чество компонент определяется эмпириче-
ски и в ходе исследования данное значение 
варьировалось от 1 до 50. По результатам 
тестирования отмечено, что применение 
метода главных компонент позволяет, с од-
ной стороны, повысить скорость обучения, 
а с другой стороны — положительно влияет 
на метрики качества. Дополнительно проте-
стировано добавление к обучающей выборке 
результатов кластеризации по форме трассы. 
Кластеризация выполнена с применением 
метода К-средних, представленного в биб-
лиотеке sklearn. Установлено, что добавление 
результатов кластеризации не влияет на ка-
чество моделей.
Таким образом, был сформирован массив 
для дальнейшего применения методов 

Рис. 1. Карта RGB-смешивания по целевому пласту. Черные точки — выборка 
скважин для обучения; желтые точки — скважины для валидации (А.В. Буторин)

Fig. 1. RGB-map for aiming horizon. Black dots — sample wells for education of model; 
yellow dots — sample for validation (Aleksandr V. Butorin)
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Рис. 2. Статистика применения линейной регрессии по одному атрибуту. Слева — кросс-плот между коэффициентом корреляции 
и среднеквадратической ошибкой; справа — гистограмма среднеквадратических ошибок (А.В. Буторин)

Fig. 2. Statistics of linear regression for single attribute. Left — cross-plot for correlation coefficient and standard deviation of errors. Right — 
histogram of standard deviation of errors (Aleksandr V. Butorin)

количественного прогноза. Массив пред-
ставлен истинными значениями эффективной 
мощности по 80 скважинам, а также набором 
атрибутов после применения метода главных 
компонент с выбором от 1 до 50 элементов 
для каждой точки скважины. Данный массив 
использовался для обучения моделей ма-
шинного обучения и получения прогнозного 
алгоритма, который в дальнейшем приме-
нялся к валидационной выборке с оценкой 
среднеквадратического отклонения (СКО) 
прогноза. 

Результаты

На начальном этапе получены оценки базо-
вых алгоритмов прогноза. В качестве од-
ного из алгоритмов протестирован метод 
среднего значения. В рамках данной моде-
ли для каждой скважины валидационной 
выборки прогнозное значение принима-
лось равным среднему по обучающей вы-
борке. Подобный алгоритм позволяет полу-
чить среднеквадратическую ошибку, равную 
5,91 м. Данная оценка является наиболее 
грубой моделью, при которой не учитываются 
имеющиеся сейсмические данные, и она мо-
жет использоваться как фундамент для по-
следующей оценки эффективности более 
сложных алгоритмов. 
В качестве второго базового алгоритма 
рассмотрена линейная регрессия по од-
ному атрибуту. Для реализации данно-
го подхода по каждому из 1800 атрибутов 

с использованием метода наименьших квад-
ратов получена зависимость эффективной 
мощности от атрибута, которая в дальней-
шем применялась к атрибутам валидацион-
ной выборки. Полученная статистика пока-
зана на рис. 2. Выбор условно наилучшей 
модели сделан по коэффициенту корреля-
ции, который составил 0,68. При подобном 
подходе точность прогноза эффективной 
мощности на валидационной выборке со-
ставила 5,69 м. В данном случае можно оце-
нить эффект от учета геофизических данных. 
В рассматриваемом примере прирост точно-
сти оказывается незначительным, что связа-
но с достаточно однозначным выделением 
геологического объекта и относительно вы-
сокой успешностью бурения.
Необходимо отметить, что полученный ре-
зультат отражает неопределенность ре-
шения задачи количественного прогноза. 
Как видно из рис. 2, в имеющейся выборке 
присутствуют атрибуты, обеспечивающие 
более высокую точность на валидационной 
выборке, — минимальная ошибка составляет 
4,96 м. Однако данный атрибут характери-
зуется меньшим значением коэффициента 
корреляции на обучающей выборке, поэтому 
его выбор невозможен. Данный факт хорошо 
иллюстрирует неопределенности, обуслов-
ленные ограниченностью имеющейся сква-
жинной статистики.
Таким образом, получены начальные оценки 
точности прогноза эффективной мощности 
при использовании относительно простых 
алгоритмов. Данные значения применяются 
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в дальнейшем для оценки эффективности 
методов машинного обучения.
Рассмотрим алгоритм исследования для ме-
тодов машинного обучения: на начальном 
этапе используемая выборка случайным об-
разом разделялась на обучающую и тесто-
вую в пропорции 70 и 30 %. Первая выборка 
использовалась для обучения алгоритма, 
вторая — для оценки метрик качества и вы-
бора наилучшей модели. В качестве кри-
терия выбора использовался коэффициент 
корреляции фактического и прогнозного 
значения эффективной мощности. В ходе 
обучения создавался цикл вычисления глав-
ных компонент от 1 до 50 с шагом 5. Внутри 
цикла происходило обучение и выбор наи-
лучшей модели для выбранного алгорит-
ма. Наиболее точный алгоритм применял-
ся к отложенной валидационной выборке 
для оценки среднеквадратического откло-
нения прогноза. Описанная последователь-
ность действий повторялась 100 раз для по-
лучения распределения ошибки прогноза 
для каждого из методов. За счет исполь-
зования случайного разделения выборки 
и вероятностной природы алгоритмов каж-
дая реализация характеризовалась своим 
итоговым значением среднеквадратической 
ошибки прогноза, что позволило сформиро-
вать статистику по эффективности каждого 
алгоритма.
Таким образом, для каждого из рассматри-
ваемых методов машинного обучения была 
сформирована гистограмма, показывающая 
ожидаемый диапазон точности прогноза.

Обсуждение

Рассмотрим результаты применения методов 
машинного обучения. На рис. 3 приведены 
гистограммы для каждого из используемых 
алгоритмов, включая линейную регрессию 
с одним параметром. Необходимо отме-
тить, что в данном случае не производился 
отбор моделей простой регрессии по коэф-
фициенту корреляции, поэтому полученное 
распределение имеет большую дисперсию 
и бимодальную форму — левый максимум со-
ответствует моделям с высокой корреляцией, 
правый — моделям с низкой корреляцией.
Наиболее простым алгоритмом является 
многомерная регрессия [2]. В общей поста-
новке использована регрессия с регуляриза-
цией. Регрессия использует линейную ком-
бинацию входных атрибутов для построения 
прогнозной модели. При этом регуляриза-
ция позволяет дополнительно ввести штраф 
на значение мультипликатора при каждом 
атрибуте, чтобы избежать слишком больших 

значений весового коэффициента. Без ис-
пользования регуляризатора регрессия 
представляет собой применение метода  

наименьших квадратов. В рамках иссле-
дования рассмотрено два вида регуля-
ризации: минимизация суммы квадратов 
весовых коэффициентов — Ridge и минимиза-
ция суммы абсолютных значений — Lasso. 
Принципиальным отличием этих алгоритмов 
является возможность обнуления некоторых 
атрибутов в рамках Lasso-регрессии.
Для регрессии по методу наименьших квад-
ратов точность модели варьируется от 5,02 
до 6,20 м с математическим ожиданием 5,49 м. 
Ridge-регрессия показывает аналогичное 
распределение точности. Lasso-регрессия 
показывает бóльшую точность: минимальное 
значение составило 4,75 м, максимальное — 
5,39 м, математическое ожидание — 5,12 м.
Таким образом, использование Lasso-
регрессии позволяет повысить прогнозную 
точность по отношению к использованию ре-
грессии по одному атрибуту.
Другим алгоритмом машинного обучения 
выступал метод случайного леса [3], заключа-
ющийся в использовании ансамбля решаю-
щих деревьев для формирования предска-
зывающей модели. Ключевыми настройками 

использование нейронной сети для прогноза 
мощности коллекторов по данным 
сейсморазведки повышает точность на 23 % 
по сравнению с другими методами.

4,5 5,0 5,5 6,0 7,06,5
Среднеквадратическая ошибка, м

Условные обозначения: SLR LR RF Lasso KNN MPL

Рис. 3. Полученные распределения ошибок для рассматриваемых методов (SLR — 
регрессия по одному атрибуту, LR — многомерная регрессия, RF — случайный 

лес, Lasso-регрессия, KNN — метод ближайших соседей, MPL — нейронная сеть) 
(А.В. Буторин)

Fig. 3. Histograms of standard deviation of errors for different methods (SLR — single 
linear regression, LR — linear regression, RF — random forest, Lasso-regression, 

KNN — method of nearest neighbors, MPL — neural net) (Aleksandr V. Butorin)
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данного алгоритма является количество ре-
шающих деревьев и их глубина. Для подбо-
ра указанных гиперпараметров использован 
метод перебора по сетке — глубина варьиро-
валась от 2 до 10 разбиений, а количество де-
ревьев — от 5 до 40. Полученное распределе-
ние ошибки характеризуется минимальным 
значением 4,76 м, максимальным — 5,67 м, 
с математическим ожиданием — 5,24 м.
По результатам расчетов метод случайного 
леса показал меньшую точность, чем Lasso-
регрессия.
Следующим рассмотренным алгоритмом 
является метод ближайших соседей [4], 
который использует осреднение по задан-
ному количеству соседних точек обучения. 
Для определения соседних точек использу-
ется евклидово расстояние в области атри-
бутов. Ключевым значимым параметром 
модели выступает количество соседних то-
чек для осреднения, в данном случае также 
выполнен перебор значений от 2 до 20 точек. 

Как показало тестирование, оптимальное 
количество соседей находится в диапазо-
не 10–16 точек. Полученное распределение 
по 100 реализациям позволяет оценить рас-
пределение точности: минимальное значе-
ние ошибки — 4,88 м, максимальное — 5,37 м, 
математическое ожидание ошибки — 5,12 м.
Как видно из гистограммы, ожидаемая 
точность прогноза методом ближайших со-
седей практически совпадает со значением 
точности Lasso-регрессии.
Последним из рассматриваемых алгоритмов 
выступала двухслойная нейронная сеть [5]. 
В рамках нейронной сети создается после-
довательность слоев, на каждом из которых 
осуществляется линейная комбинация вход-
ных значений атрибутов с применением за-
данной функции активации. Дополнительно 
для стабилизации решения использована 
регуляризация по сумме квадратов весо-
вых коэффициентов. Как показало тестиро-
вание, наилучший результат достигается 
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Рис. 4. Результат прогноза эффективной мощности с применением алгоритма нейронной сети. Слева — сопоставление фактических 
и прогнозных значений (пунктиром показана линия y=x, красные точки — обучающая выборка, синие точки — тестовая выборка на этапе 

обучения, зеленые точки — валидационная выборка); справа — прогнозная карта эффективной мощности пласта (А.В. Буторин)
Fig. 4. Result of reservoir thickness estimation from neural network. Left — comparison of true and predicted values (dotted line — y=x, red dots — 

train set, blue dots — test set, green dots — validation set); Right — map of reservoir thickness (Aleksandr V. Butorin)
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при использовании логистической функ-
ции активации. Полученное распределение 
точности характеризуется следующими па-
раметрами: минимальное значение — 4,58 м, 
максимальное — 5,19 м, математическое ожи-
дание ошибки — 4,85 м.
Таким образом, использование нейрон-
ной сети позволяет получить наименьшую 
прогнозную оценку ошибки. Прирост в ка-
честве прогноза составляет 23 % по отно-
шению к методу регрессии по одному атри-
буту. Анализируя результат применения 
одной из моделей, основанной на нейрон-
ной сети (рис. 4), можно отметить, что дис-
персия на обучении и валидации остается 
схожей, что говорит об отсутствии переобу-
чения модели. Однако отмечается занижение 
прогноза в областях с высокой мощностью, 
что может быть связано с недостаточностью 
подобных скважин в тестовой выборке.

Резюмируя проведенное исследование, 
можно отметить, что использование мето-
дов машинного обучения позволяет повы-
сить точность прогноза на 23 %. Наилучший 
результат достигается при использовании 
нейронной сети, в то время как остальные 
методы показывают схожую точность прогно-
за и обеспечивают повышение точности 
прогноза около 10–13 %. Незначительный 
прирост в информативности связан с неко-
торой смещенностью имеющейся статисти-
ки — бурение скважин априорно ориенти-
ровалось на выделяемый геологический 
объект, что приводит к удовлетворительному 
прогнозу даже при использовании модели 
среднего значения. Результаты исследования 
показывают простоту использования совре-
менных алгоритмов анализа, все вычисления 
выполнены с применением открытых библио-
тек языка python.
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