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Введение. Конусообразование является ведущим осложнением на водоплавающих залежах 
с высоковязкими нефтями. Оно происходит вследствие более высокой подвижности подошвенной 
воды относительно нефти. Преждевременное обводнение скважин ведет к снижению коэффициента 
извлечения нефти (КИН) и экономических показателей разработки месторождения. В таких условиях 
для предупреждения или замедления конусообразования необходима методика, позволяющая 
контролировать текущее положение водо-нефтяного контакта (ВНК). 
Цель. Основной целью настоящей работы является разработка новой методики контроля 
конусообразования на водоплавающих залежах с высоковязкими нефтями, что впоследствии необходимо 
для подбора оптимального режима горизонтальных скважин. В качестве диагностического признака 
предлагается скин-фактор: он снижается при подъеме конуса воды к горизонтальной скважине. 
Материалы и методы. Исследование проводилось на основе трехфазной гидродинамической модели 
(ГДМ). На первом этапе варьировалось положение горизонтальной скважины (ГС) относительно ВНК: 1, 3, 5, 
7 и 9 м до ВНК. Для каждого случая были получены кривые восстановления давления (КВД), интерпретация 
которых в специализированном ПО позволила определить скин-фактор. Далее был проанализирован 
характер его изменения в зависимости от режима работы скважины. Дополнительно выполнен анализ 
чувствительности к изменениям граничных условий, фильтрационно-емкостных свойств пласта и его 
геологического строения (наличие пропластков, газовой шапки).
Результаты. Во всех выполненных расчетах гипотеза «штуцирования» нефтенасыщенной толщиной притока 
жидкости в скважину подтверждается. Установлена прямая зависимость скин-фактора от расстояния 
до ВНК и обратная от текущей обводненности (высоты конуса воды). Показано, что методика применима 
в широком диапазоне геолого-физических условий, за исключением случаев наличия непроницаемого 
пропластка, экранирующего приток воды к скважине. 
Заключение. Предложенная методика на основе мониторинга скин-фактора является эффективным 
инструментом для диагностики конусообразования и может быть использована для оптимизации 
разработки залежей высоковязких нефтей. Конкретные параметры методики контроля, такие как способ 
и периодичность определения скин-фактора, а также непосредственные граничные значения необходимо 
устанавливать индивидуально для объектов с учетом их особенностей. 

Ключевые слова: скин-фактор, оптимальный режим скважины, ГДИС, горизонтальная скважина, 
высоковязкие нефти, водоплавающая залежь, гравитационный эффект 
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ДЛЯ ПРЕДОТВРАЩЕНИЯ ПРЕЖДЕВРЕМЕННОГО 
ОБВОДНЕНИЯ И ОПТИМИЗАЦИИ РЕЖИМА 
ЭКСПЛУАТАЦИИ ГОРИЗОНТАЛЬНЫХ СКВАЖИН 
НА ВОДОПЛАВАЮЩИХ ЗАЛЕЖАХ С ВЫСОКОВЯЗКОЙ 
НЕФТЬЮ ПРЕДЛОЖЕНО ИСПОЛЬЗОВАТЬ 
ИНТЕГРАЛЬНЫЙ СКИН@ФАКТОР КАК ИНДИКАТОР 
ПОДЪЕМА ВОДЫ.

Background. Well coning is a top complication for reservoirs with high-viscosity oil and bottom water. The main 
reason is the higher mobility of bottom water relative to oil. Premature well watering leads to a decrease in oil 
recovery factors (ORF) and the economical effi  ciency of fi eld development. Under these conditions, preventing or 
slowing well coning requires a method that allows monitoring the current position of the OWC.
Aim. The main objective of this study is to develop a new method for monitoring water coning in high-viscosity 
oil reservoirs. This is necessary for selecting the optimal operating mode for horizontal wells. The skin factor is 
proposed as a diagnostic indicator: it decreases as the water cone rises toward the horizontal well.
Materials and methods. The study was conducted using a three-phase dynamic model with. At the fi rst stage, 
the position of the horizontal well relative to the oil-water contact (OWC) was varied: 1, 3, 5, 7, and 9 meters above 
the OWC. For each case, pressure buildup curves were obtained, and their interpretation in specialized sok ware 
enabled the determination of the skin factor. Next, the nature of the change in the skin factor depending on the 
well operating mode was analyzed. Additionally, a sensitivity analysis was performed, assessing the impact of 
changes in boundary conditions, petrophysical properties and geological structure (presence of shale breaks and 
a gas cap).
Results. All the calculations agree with the idea of «choking» the liquid infl ow by the oil rim. Skin depends directly 
on the distance to the OWC, and inversely — on the current water-cut (water cone height). It was demonstrated 
that the methodology is applicable across a wide range of geological and physical conditions, except for cases 
involving shale breaks that screens water infl ow to the well.
Conclusions. The proposed methodology, based on skin factor monitoring, is an eff ective methodology for 
diagnosing coning and can be used to optimize the development of heavy oil reservoirs. Specifi c parameters of 
the monitoring technique, such as the method and frequency of skin factor determination and limit values, must 
be established individually for each formation, taking into account its specifi c characteristics.
Keywords: skin factor, well optimal operating mode, well test analysis, horizontal well, heavy oil, oil rim, gravity 
segregation
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ВВЕДЕНИЕ

Конусообразование является ведущим 
осложнением на водоплавающих залежах 
с высоковязкими нефтями. Оно происхо-
дит вследствие более высокой подвижно-
сти подошвенной воды относительно неф-
ти. Преждевременное обводнение скважин 
ведет к снижению коэффициента извлечения 
нефти (КИН) и экономических показателей 
разработки месторождения. В таких усло-
виях для предупреждения или замедления 
конусообразования необходима методика, 
позволяющая контролировать текущее по-
ложение водо-нефтяного контакта (ВНК) [1, 
2]. Гидродинамические исследования сква-
жин (ГДИС) прочно зарекомендовали себя 
в качестве одного из наиболее эффективных 
направлений промыслово-геофизическо-
го контроля разработки нефтяных и газовых 
месторождений [3]. 
При интерпретации повторных гидроди-
намических исследований (рис. 1) гори-
зонтальных скважин крупного месторожде-
ния вязкой нефти замечено, что значение 
интегрального скин-фактора существенно 
снижается при формировании устойчиво-
го конуса воды [4]. В сочетании с доволь-
но высокими для горизонтальных скважин 
(ГС) начальными значениями интегрального 

скин-фактора этот факт можно интерпрети-
ровать в виде следующей гипотезы: в кон-
тактных залежах вязкой нефти одной из со-
ставляющих интегрального скин-фактора 
является контраст между вязкостью нефти 
и воды, поскольку распределение давления 
происходит по всей толщине, а проводка 
скважины выполнена в нефтенасыщенной 
части разреза. 

Сам по себе этот факт заставляет пересмот-
реть многие подходы к анализу ГДИС и при-
менению их результатов, однако в данной 
статье авторы хотят рассмотреть возмож-
ность использования скин-фактора как диа-
гностического признака подъема воды к ГС, 
чтобы впоследствии использовать его зна-
чение при подборе оптимального режима 
скважины.
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ОПИСАНИЕ РАБОТЫ

Работа выполнена на примере крупного газо-
конденсатного месторождения, расположен-
ного в Ямало-Ненецком автономном округе. 
Объектом исследования является газонеф-
тяная залежь в терригенных отложениях 
сеноманского яруса (пласт ПК1 покурской 
свиты). Залежь пласта ПК1 массивная сводо-
вая, водоплавающая, осложненная малоам-
плитудными тектоническими нарушениями. 
По результатам комплексной интерпретации 
данных геофизических исследований сква-
жин (ГИС) средневзвешенная эффективная 
газонасыщенная толщина составляет 13 м, 
средневзвешенная эффективная нефтена-
сыщенная толщина — 5 м, эффективная во-
донасыщенная толщина в среднем состав-
ляет 74 м. По данным исследования керна 
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Рис. 1. Пример ГДИС с эффектом снижения скин-фактора при формировании устойчивого конуса воды. Составлено авторами
Fig. 1. An example of well testing with the eff ect of reducing the skin factor during the formation of a stable water cone. Compiled by the authors

Таблица 1. Свойства нефти. Составлено авторами
Table 1. Oil properties. Compiled by the authors

Параметр Значение

Начальное пластовое давление, бар 114

Начальная пластовая температура, °С 26

Давление насыщения, бар 114

Плотность пластовой нефти, кг/м3 871

Вязкость пластовой нефти, мПа*с 36,26

Газосодержание, м3/т 43,4

Объёмный коэффициент нефти 1,106
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при средней пористости 30% проницаемость 
варьирует от 50 до 1000 мД. Относительные 
фазовые проницаемости (ОФП) по данным 
специального анализа керна описывают-
ся функцией Corey, степень функции также 
варьирует в широком диапазоне: по нефти 
от 1,5 до 4, по воде от 2 до 5. Основные свой-
ства нефти представлены в табл. 1.
Для проверки гипотезы создана трехфазная 
гидродинамическая модель (ГДМ), где регу-
лировалось положение ГС относительно ВНК 
(рис. 2): 1, 3, 5, 7 и 9 м до ВНК. Моделирование 
проводилось с локальным измельчением сет-
ки. Параметры синтетической ГДМ представ-
лены в табл. 2, свойства нефти в ГДМ соот-
ветствуют табл. 1. Горизонтальные скважины 
запускались в добычу на 1 год, далее оста-
навливались (рис. 4). На графике зеленые 
точки — это давление при расстоянии от ВНК 
до ствола 9 м, черные точки — 1 м. Видно, 
что продуктивность тем выше, чем меньше 
расстояние до ВНК. Диагностический график 
кривой восстановления давления (КВД) по-
казан на рис. 5. Результаты показывают пря-
мую зависимость скин-фактора от расстояния 
до ВНК.
 Следующим шагом была оценка харак-
тера изменения скин-фактора при измене-
нии режима. Для данного теста абсолютная 
проницаемость была увеличена до 1300 мД. 
Скважина располагалась на 5 м выше ВНК. ГС 
запускалась на 15 дней с дебитами жидкости 
50, 100, 200, 300 м3/сут, при этом запуски сме-
нялись аналогичными остановками (рис. 6). 
На верхнем графике рис. 6 видно, что имеет 
место влияние гравитационных сил: по-
сле продолжительной остановки скважина 
запускается без воды. На диагностическом 
графике (рис. 7) по-прежнему видно, что ди-
намика скин-фактора зависит от текущей 
обводненности (высоты конуса). Таким об-
разом, скин-фактор может быть использо-
ван как диагностический признак подъема 
воды к ГС.
Для понимания области применения дан-
ной методики выполнен анализ чувстви-
тельности, в ходе которого варьировались 
граничные условия, пористость, абсолютная 
проницаемость, ОФП, наличие непроница-
емого пропластка, наличие газовой шапки 
(ГШ), нефтенасыщенная толщина (рис. 8). 
Почти во всех вариантах видно, что есть 
влияние гравитационных сил: после продол-
жительной остановки обводненность сни-
жается, а в некоторых расчетах становится 
близкой к нулю. В ходе анализа результатов 
расчета выявлено, что такие переменные 
как пористость, нефтенасыщенная толщина, 

Таблица 2. Параметры ГДМ. Составлено авторами
Table 2. Model parameters. Compiled by the authors

Параметр Значение

Кол-во ячеек 50*50*84

Размер ячеек, м 50*50*1

Локальное измельчение сетки LGR 10*11*3

Пористость 0,3

Проницаемость 300

ОФП: степень ф-и Corey для воды и нефти 2

Газонасыщенная толщина, м 0

Нефтенасыщенная толщина, м 10

Водонасыщенная толщина, м 74

Длина ГС, м 200

Н = 10 м

ВНК

9 м

5 м

1 м

Н = 74 м

Нефте-
насыщенность
0,71000

0,53250

0,35500

0,17750

0,00000

Рис. 2. Схематический профиль вдоль ГС (насыщенность нефтью на начало 
расчета). Составлено авторами

Fig. 2. Cross-section along the well (oil saturation at the beginning of the calculation). 
Compiled by the authors

Рис. 3. Локальное измельчение сетки. Составлено авторами
Fig. 3. Local grid refi nement (LGR). Compiled by the authors
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Условные обозначения:
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Рис. 5. Диагностический график. Составлено авторами
Fig. 5. Diagnostic chart. Compiled by the authors
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Fig. 4. Comparison of bottomhole pressure at diff erent distances from the OWC. Compiled by the authors
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Рис. 7. Диагностический график. Составлено авторами 
Fig. 7. Diagnostic chart. Compiled by the authors
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“Линейные” ОФП

ОФП, настроенная 
на историю 
из полномасштаб-
ной ГДМ

№                Проницаемость , мД                       ОФП                         ННТ, м         Пористость,     Сжимаемость           Аквифер         Газовая шапка         Непрониц.      

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

100
450
1000
1500
3000
100
450
1000
1500
3000
1000

10                       0,2                        5*10-5                      есть                         нет                            нет         

20
10                       0,3
                           0,2                        27*10-5

                                                         5*10-5                      нет
                                                                                          есть                         есть
                                                                                                                           нет                            0,5L
 1L

0,75L
0,88L
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Рис. 8. Анализ чувствительности. Составлено авторами 
Fig. 8. Sensitivity analysis. Compiled by the authors
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Рис. 9. Динамика добычи жидкости и обводненности при разных проницаемостях. Составлено авторами
Fig. 9. Fluid production and water cut performance. Compiled by the authors
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сжимаемость, аквифер, не оказывают суще-
ственного влияния на возможность примене-
ния методики.
На более высоких проницаемостях гра-
витационный эффект проявляется ярче. 
На рис. 9 показано сравнение обводнен-
ностей ГС на разных режимах (50, 100, 200, 
50 м3/сут) при разных абсолютных проница-
емостях. При 100 мД обводненность почти 
не зависит от дебита жидкости, а при прони-
цаемости 450 мД и выше наблюдается четкая 
зависимость обводненности от дебита жид-
кости. 
Также выполнен анализ чувствительно-
сти к наличию ГШ. Для этого в ГДМ со-
здана ГШ толщиной 13 м. ГС также запус-
калась на четырех режимах (50, 100, 200, 
50 м3/сут). Сопоставление динамики добычи 

жидкости и обводненности приведено 
на рис. 10. Обводненность в ГДМ с ГШ на-
растает медленнее, чем в ГДМ без ГШ, тем 
не менее также наблюдается зависимость 
обводненности от дебита жидкости. 
Наличие непроницаемого пропластка ниже 
ГС (рис. 11) существенно влияет на динами-
ку обводненности и может изменить карти-
ну «гравитационного эффекта». На рис. 12 
показаны несколько вариантов расчета ГДМ 
с различной длиной перекрытия по латерали 
ГС. По графику можно сделать вывод, что чем 
больше перекрытие ГС, тем меньше наблюда-
ется зависимость обводненности от дебита 
жидкости. Таким образом, наличие непрони-
цаемого пропластка в некоторых случаях мо-
жет стать помехой для применения данной 
методики. 
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Рис. 10. Динамика добычи жидкости и обводненности (с ГШ и без ГШ). Составлено авторами
Fig. 10. Fluid production and water cut performance (with and without gas cap). Compiled by the authors
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Нет непроницаемого пропластка
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Рис. 11. Варианты распространения непроницаемого пропластка. Составлено авторами
Fig. 11. Confi guration impermeable barriers. Compiled by the authors
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Fig. 12. Fluid production and water cut performance for diff erent impermeable interval lengths. Compiled by the authors



75

ВЫВОДЫ

Во всех выполненных расчетах гипотеза 
«штуцирования» нефтенасыщенной толщи-
ной притока жидкости в скважину под-
тверждается. Зависимость скин-фактора 
от расстояния до ВНК прямая, от текущей об-
водненности (высоты конуса воды) — обрат-
ная. При этом:
• при более высоких проницаемостях грави-

тационный эффект проявляется ярче;
• наличие ГШ оказывает влияние на дина-

мику обводнения, но не влияет на возмож-
ность применения методики;

• такие переменные, как пористость, неф-
тенасыщенная толщина, сжимаемость, 

аквифер не оказывают существенного 
влияния на возможность применения ме-
тодики;

• наличие непроницаемого пропластка 
ниже ГС, значительно перекрывающего 
снизу водную зону, может стать помехой 
для применения методики.

Таким образом, скин-фактор может быть 
использован как диагностический признак 
подъема воды к ГС с некоторыми допуще-
ниями. Конкретные параметры методики 
контроля, такие как способ и периодич-
ность определения скин-фактора, а так-
же непосредственные граничные значения 
необходимо устанавливать индивидуально 
для объектов с учетом их особенностей. 
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