Preview

PROneft. Professionally about Oil

Advanced search

Application of AVAZ inversion algorithm based on exact formulas to a wide-azimuth seismic survey data

https://doi.org/10.51890/2587-7399-2021-6-2-12-19

Abstract

Results of applying of nonlinear AVAZ inversion optimization algorithm to data from 3D wide-azimuth seismic survey in the Republic of Serbia are presented. The algorithm is based on exact reflection coefficients formulas for PP reflection from anisotropic medium. We compare it with a conventional algorithm based on Ruger linear approximation of P-wave reflection from a boundary between isotropic and anisotropic (HTI) media. Maps of fracture orientation and anisotropy degree are more detailed in the case of using AVAZ inversion based on exact formulas. The results are in general accordance with the FMI well data, which indicates reliable performance of the algorithm.

About the Authors

G. A. Dugarov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Russian Federation


T. V. Nefedkina
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Russian Federation


I. Yu. Bogatyrev
NTC NIS – Naftagas
Russian Federation


N. A. Goreiavchev
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State University
Russian Federation


G. M. Mitrofanov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State University
Russian Federation


T. V. Olneva
Gazpromneft NTC LLC
Russian Federation


References

1. Bakulin A., Grechka V., Tsvankin I. Estimation of fracture parameters from reflection seismic data. Part I: HTI model due to a single fracture set // Geophysics. – 2000. – V. 65, – No. 6. – P. 1788–1802.

2. Bakulin A., Grechka V., Tsvankin I. Estimation of fracture parameters from reflection seismic data. Part II: Fractured models with orthorhombic symmetry // Geophysics. – 2000. – V. 65. – No. 6. – P. 1803–1817.

3. Bakulin A., Grechka V., Tsvankin I. Estimation of fracture parameters from reflection seismic data. Part III: Fractured models with monoclinic symmetry // Geophysics. – 2000. – V. 65, – No. 6. – P. 1818–1830.

4. Koren Z., Ravve I. Full-azimuth subsurface angle domain wavefield decomposition and imaging. Part I: Directional and reflection image gathers // Geophysics. – 2011. – V. 76. – No. 1. –S. 1–13.

5. Ravve I., Koren Z. Full-azimuth subsurface angle domain wavefield decomposition and imaging: Part II: Local angle domain // Geophysics. – 2011. – V. 76. – No. 2. – P. S51–S64.

6. Canning A., Malkin A. Azimuthal AVA analysis using full-azimuth 3D angle gathers // SEG Technical Program Expanded Abstracts. – 2009. – V. 28. – P. 256–259.

7. Ольнева Т.В., Семин Д.Г., Богатырев И.Ю., Ежов К.А., Иноземцев А.Н. Оценка информативности векторных анизотропных карт на основе комплексирования сейсмических, скважинных и региональных данных // Геофизика. – 2017. – № 4. – С. 53–61.

8. Богатырев И., Семин Д., Ольнева Т., Иноземцев А. Опробование технологии полно-азимутальной угловой миграции EarthStudy360® при исследовании донеогенового основания на одном из месторождений Республики Сербия // Технологии сейсморазведки. – 2017. – № 1. – С. 63–71.

9. Olneva T., Semin D., Inozemtsev A., Bogatyrev I., Ezhov K., Kharyba E., Koren Z. Improved seismic images through full-azimuth depth migration: updating the seismic geological model of an oil field in the pre-neogene base of the Pannonian Basin // First Break. – 2019. – V. 37. – P. 91–97.

10. Лыхин П.А., Нефедкина Т.В. Потенциал нелинейной AVOA-инверсии отраженных продольных волн для изучения трещиноватых карбонатных коллекторов нефти и газа // Технологии сейсморазведки. – 2017. – № 2. – С. 59–68.

11. Нефедкина Т.В., Лыхин П.А., Дугаров Г.А. Определение упругих параметров азимутально-анизотропных сред из многоволновых AVOA данных методом нелинейной оптимизации // Геофизические технологии. – 2018. – № 2. – С. 14–26.

12. Rüger A. P-wave reflection coe fficients for transversely isotropic models with vertical and horizontal axis of symmetry // Geophysics. – 1997. – V. 62. – P. 713–722.

13. Vavryčuk V., Pšenčik I. PP-wavereflection coe fficients in weakly anisotropic media // Geophysics. – 1998. – V. 63. – P. 2129–2141.

14. Rüger A. Reflection coe fficients and azimuthal AVO analysis in anisotropic media. – Society of Exploration Geophysics, 2001. 185 p.

15. Downton J., Roure B., Hunt L. Azimuthal Fourier coe fficients // CSEG Recorder, 2011, V. 36, No. 10, P. 22–36.

16. Нефедкина Т.В., Лыхин П.А. Применимость линеаризованных аппроксимаций коэффициента отражения продольных волн для азимутального анализа амплитуд PP отражений в анизотропных средах // Технологии сейсморазведки. – 2016. – № 4. – С. 21–32.

17. Петрашень Г.И., Каштан Б.М., Ковтун А.А. Распространение объемных волн и методы расчета волновых полей в анизотропных упругих средах / Сборник научных трудов под ред. Г.И. Петрашеня. – Л.: Наука, 1984. – 282 с.

18. Hudson J.A. Overall properties of a cracked solid // Mathematical Proceedings of the Cambridge Philosophical Society. 1980. – V. 88. – No. 2. – P. 371–384.

19. Tsvankin I. Reflection moveout and parameter estimation for horizontal transverse isotropy // Geophysics. – 1997. – V. 62. – No. 2. – P. 614–629.


Review

For citations:


Dugarov G.A., Nefedkina T.V., Bogatyrev I.Yu., Goreiavchev N.A., Mitrofanov G.M., Olneva T.V. Application of AVAZ inversion algorithm based on exact formulas to a wide-azimuth seismic survey data. PROneft. Professionally about Oil. 2021;6(2):12-19. (In Russ.) https://doi.org/10.51890/2587-7399-2021-6-2-12-19

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7399 (Print)
ISSN 2588-0055 (Online)