Automation of the forecasting process for wells base production
https://doi.org/10.51890/2587-7399-2021-6-2-45-49
Abstract
About the Authors
A. A. RybakovskayaRussian Federation
I. V. Fakhretdinov
Russian Federation
A. A. Prokhorov
Russian Federation
T. Ch. Fatkhullin
Russian Federation
A. N. Zvada
Russian Federation
I. A. Skvarko
Russian Federation
References
1. Arps J.J. Analysis of Decline Curves // AIME. – 1945. – V. 160. – Pp. 228–247. https://doi.org/10.2118/945228-G
2. Doublet L.E., Pande P.K., McCollum T.J., Blasingame T.A. Decline Curve Analysis Using Type Curves–Analysis of Oil Well Production Data Using Material Balance Time: Application to Field Cases // Society of Petroleum Engineers. – 1994, January 1. https://doi.org/10.2118/28688-MS
3. Габитова С.И., Давлетбакова Л.А., Климов В.Ю. Методика прогнозирования темпов падения нефти проектных скважин на основе алгоритма машинного обучения // PROНЕФТЬ. Профессионально о нефти. – 2020 – № 4 (18). – С. 69–74. https://doi.org/10.7868/S2587739920040102
4. Ling K., He J. Theoretical Bases of Arps Empirical Decline Curves // Society of Petroleum Engineers. – 2012, January 1. https://doi.org/10.2118/161767-MS.
5. Teplyakov N., Slabetskiy A., Sarapulov N. [et al.] Application of Machine Learning Methods for Modeling the Current Indicators of Operating Wells Stock of PJSC Gazprom Neft / // SPE-191585-18RPTC-MS. – 2018.
Review
For citations:
Rybakovskaya A.A., Fakhretdinov I.V., Prokhorov A.A., Fatkhullin T.Ch., Zvada A.N., Skvarko I.A. Automation of the forecasting process for wells base production. PROneft. Professionally about Oil. 2021;6(2):45-49. (In Russ.) https://doi.org/10.51890/2587-7399-2021-6-2-45-49