Preview

PROneft. Professionally about Oil

Advanced search

Application of machine learning to predict the acoustic properties of rock samples

https://doi.org/10.24887/2587-7399-2018-4-67-70

Abstract

In the cases of absence acoustic logging, alternative methods of calculating the necessary rock properties are required. This article describes the results of applying machine learning technologies to predict the velocities of elastic waves propagation.

About the Authors

I. S. Chebyshev
Gazpromneft NTC LLC
Russian Federation

Saint-Petersburg



E. S. Baryshnikov
Skolkovo institute of science and technology
Russian Federation


V. A. Legkokonets
Saint-Petersburg Mining University
Russian Federation


References

1. Zoback M., Reservoir geomechanics, Cambridge University Press, 2010, 461 p.

2. Fjar E., Holt R.M., Horsrud, P., Raaen A.M., Risnes R., Petroleum related rock mechanics, Elsevier, 2008, 492 p.

3. Zwillinger D., Kokoska S., Standard probability and statistics tables and formulae, London, New York: Chapman & Hall CRC, 2000, 537 p.

4. Chebyshev I., Legkokonets V., Lukin S., Specifics of mechanical and strength rock properties estimation for wells drilling and exploitation, Procedia Structural Integrity, 2017, no. 6, pp. 252-258.

5. Hastie T., Tibshirani R., Friedman J., The elements of statistical learning: data mining, inference, and prediction, Springer, 2017, 745 p.


Review

For citations:


Chebyshev I.S., Baryshnikov E.S., Legkokonets V.A. Application of machine learning to predict the acoustic properties of rock samples. PROneft. Professionally about Oil. 2018;(4):67-70. (In Russ.) https://doi.org/10.24887/2587-7399-2018-4-67-70

Views: 92


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7399 (Print)
ISSN 2588-0055 (Online)