Application of “Computational Rock Physics” tool for carbonate reservoirs of Kharyaga field
https://doi.org/10.51890/2587-7399-2022-7-4-152-164
Abstract
Aim. Paper presents the results of implementation “Computational Rock Physics” tool.
Materials and methods. As a pilot program, core samples from Kharyaga carbonate D3-III were investigated and tested with the tool. One of the main advantages of using this tool is that it is less time consuming compared to laboratory tests. This becomes more obvious when core has permeabilities of 1mD or even less. In laboratory in can take from 1 to 3 months to estimate relative permeabilities or displacement coefficient, compared to desktop calculation — depending on CPU from 1 to 10 days. Another possible advantage of the tool is lower costs for one experiment. General procedure in applying tool is done in two steps: first one, initially samples go through high-resolution tomograph, second step, with application of the tool, relative permeabilities and displacement coefficient are calculated.
Results. This paper shows following calculations/injection schemes performed: injection of surfactant/polymer composition in oil saturated sample, injection of surfactant/polymer analogue composition in oil saturated sample, injection of gas in oil saturated sample. Attempt was made to compare achieved results with laboratory data, however it has some limitations.
Conclusions. Next step in developing technology is to include such options as: connate water saturation set up, simultaneous calculation for 3 phases — air, gas and water, miscible gas injection (CO2).
About the Authors
Yu. M. TrushinRussian Federation
Yury M. Trushin — Chief geologist
bldg. 2, block 3, Paveletskaya pl., Moscow, 115054, Russia
O. N. Zoshchenko
Russian Federation
Oleg N. Zoshchenko — Head of field development department
bldg. 2, block 3, Paveletskaya pl., Moscow, 115054, Russia
M. S. Arsamakov
Russian Federation
Mark S. Arsamakov — Reservoir engineer
bldg. 2, block 3, Paveletskaya pl., Moscow, 115054, Russia
M. M. Hairullin
Russian Federation
Marsel M. Hairullin — Technical advisor
Dmitrovsky pr. 10, Moscow, 127422, Russia
References
1. Ju Y. Characterization of immiscible phase displacement in heterogeneous pore structures: Parallel multicomponent lattice Boltzmann simulation and experimental validation using three-dimensional printing technology [Text] / Y. Ju, W. Gong, J. Zheng // International Journal of Multiphase Flow. — 2019. — Vol. 114. — Pp. 50–65.
2. Al-Shalabi E. W. Effect of Pore-Scale Heterogeneity and Capillary-Viscous Fingering on Commingled Waterflood Oil Recovery in Stratified Porous Media [Text] / E. W. Al-Shalabi, B. Ghosh // Journal of Petroleum Engineering. — 2016. — Vol. 2016. — 1708929.
3. Chen Y.-F. Experimental study on two-phase flow in rough fracture: Phase diagram and localized flow channel [Text] / Y.-F. Chen, D.-S. Wu, Sh. Fang, R. Hu // International Journal of Heat and Mass Transfer. — 2018. — Vol. 122. — Pp. 1298–1307.
4. Kazemifar F. Quantifying the flow dynamics of supercritical CO2–water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV [Text] / F. Kazemifar, G. Blois, D. C. Kyritsis, K. Christensen // Advances in Water Resources. — 2016. — Vol. 95. — Pp. 352–368.
5. Aursjø O. A Direct Comparison Between a Slow Pore Scale Drainage Experiment and a 2D Lattice Boltzmann Simulation [Text] / O. Aursjø, G. Løvoll, H. A. Knudsen, E. G. Flekkøy, K. J. Måløy // Transport in Porous Media. — 2011. — Vol. 86. — Pp. 125–134.
6. Chen Y. Christensen. Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions [Text] / Y. Chen, Y. Lib, A. J. Valocchi, K. T. // Journal of Contaminant Hydrology. — 2018. — Vol. 212. — Pp. 14-27.
7. Fakhari A. Christensen. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale [Text] / A. Fakhari, Y. Li, D. Bolster, K. T. // Advances in Water Resources. — 2018. — Vol. 114. — Pp. 119–134.
8. Berg S. Multiphase flow in porous rock imaged under dynamic flow conditions with fast x-ray computed microtomography [Text] / S. Berg, R. T. Armstrong, H. Ott, A. Georgiadis, S. A. Klapp, A. Schwing, R. Neiteler, N. Brussee, A. Makurat, L. Leu, F. Enzmann, F.-O. Schwarz, M. Wolf, F. Khan, M. Kersten, S. Irvine, M. Stampanoni // International Symposium of the Society of Core Analysts held in Napa Valley, California, USA. — 16–19 September, 2013.
9. Berg S. Real-time 3D imaging of Haines jumps in porous media flow [Text] / S. Berg, H. Ott, S. Klapp, A. Schwing, R. Neiteler, N. Brussee, A. Makurat, L. Leu, F. Enzmann, J.-O. Schwarz, M. Kersten, S. Irvine, M. Stampanoni // Proceedings of the National Academy of Sciences of the United States of America. — 2013. — Vol. 10. — Pp. 3755–3759.
10. Leu L. Fast X-ray Micro-Tomography of Multiphase Flow in Berea Sandstone: A Sensitivity Study on Image Processing [Text] / L. Leu, S. Berg, F. Enzmann, R. T. Armstrong, M. Kersten // Transport in Porous Media. — 2014. — Vol. 105. — Pp. 451–469.
11. Mokso R. Following dynamic processes by X-ray tomographic microscopy, with sub-second temporal resolution [Text] / R. Mokso, F. Marone, D. Haberthür, J.C. Schittny, G. Mikuljan, A. Isenegger, M. Stampanoni // In: AIP Conference Proceedings. — 2011. — No. 1365. — Pp. 38–41.
12. Andrew M. The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions [Text] / M. Andrew, H. Menke, M. Blunt, B. Bijeljic // Transp. Porous. Med. — 2015. — Vol. 110. — Pp. 1–24.
13. Mehravaran M. Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods [Text] / M. Mehravaran, S.K. Hannani // Comput. Methods Appl. Mech. Engrg. — 2008. — No. 198. — Pp. 223–233.
14. Sheu Tony W.H. Development of level set method with good area preservation to predict interface in two-phase flows [Text] / W.H. Sheu Tony, C.H. Yu, P.H. Chiu // Int. J. Numer. Meth. Fluids. — 2011. — Vol. 67. — Pp. 109–34.
15. Olsson E. A conservative level set method for two phase flow [Text] / E. Olsson, G. Kreiss // Journal of Computational Physics. — 2005. — No. 210. — Pp. 225–246.
16. Ferrari A. Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy [Text] / A. Ferrari, I. Lunati // Advances in Water Resources. — 2013. — Vol. 57. — Pp. 19–31.
17. Raeini A. Q. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method [Text] / A. Q. Raeini, M. Blunt, B. Bijeljic // Journal of Computational Physics. — 2012. — No. 231. — Pp. 5653–5668.
18. Badalassi V.E. Computation of multiphase systems with phase field models [Text] / V.E. Badalassi, H.D. Ceniceros, S. Banerjee // Journal of Computational Physics. — 2003. — No. 190. — Pp. 371–397.
19. Wolf-Gladrow D.A. Lattice-gas cellular automata and lattice Boltzmann models — an introduction [Text] / D.A. WolfGladrow. — Berlin: Springer-Verlag, 2005. — 311 p.
20. Succi S. The Lattice Boltzmann equation for fluid dynamics and beyond [Text] / S. Succi — Oxford: Oxford Clarendon, 2001. — 304 p.
21. Chen S. Lattice Boltzmann method for fluid flows [Text] / S. Chen, G.D. Doolen // Annual Review of Fluid Mechanics. — 1998. — Vol. 30. — Pp. 329–364.
22. Liu H. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network [Text] / H. Liu, Y. Zhang, A. J. Valocchi // Physics of Fluids. — 2015. — Vol. 27, Issue 5. — 052103.
23. Li H. Pore-Scale Simulations of Gas Displacing Liquid in a Homogeneous Pore Network Using the Lattice Boltzmann Method [Text] / H. Liu, A. J. Valocchi, Q. Kang, C. Werth // Transport in Porous Media. — 2013. — Vol. 99. — Pp. 555–580.
24. Huang H. Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method [Text] / H. Huang, J.-J. Huang, X.-Y. Lu // Computers & Fluids. — 2014. — Vol. 93. — Pp. 164–172.
25. Yamabe H. Lattice Boltzmann Simulations of Supercritical CO2-Water Drainage Displacement in Porous Media: CO2 Saturation and Displacement Mechanism [Text] / H. Yamabe, T. Tsuji, Y. Liang, T. Matsuoka // Environmental Science and Technology. — 2015. — Vol. 49. — Pp. 537-543.
26. Jiang F. Elucidating the Role of Interfacial Tension for Hydrological Properties of Two-Phase Flow in Natural Sandstone by an Improved Lattice Boltzmann Method [Text] / F. Jiang, T. Tsuji, C. Hu // Transport in Porous Media. — 2014. — Vol. 104. — Pp. 205-229.
27. Leclaire S. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase porescale imbibition and drainage in porous media [Text] / S. Leclaire, A. Parmigiani, O. Malaspinas, B. Chopard, J. Latt // Physical Review E. — 2017. — Vol. 95. — 033306.
28. Kupershtokh A.L. Modeling of heat and mass transfer in a medium with phase transitions by the method of lattice Boltzmann equations [Text] / A.L. Kupershtokh, D.A. Medvedev, I.I. Gribanov // Computational methods and programming. — 2014. — Vol. 15. — Pp. 317–328 (In Russ.)
29. Mohamad A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem [Text] / A.A. Mohamad, A. Kuzmin // International Journal of Heat and Mass Transfer. — 2010. — Vol. 53. — Pp. 990–996.
30. Baa Y. Three-dimensional lattice Boltzmann simulations of microdroplets including contact angle hysteresis on topologically structured surfaces [Text] / Y. Baa, Q. Kang, H. Liua, J. Suna, C. Wang // Journal of Computational Science. — 2016. — Vol. 17. — Pp. 418–430.
31. Blunt M. J. Pore-scale imaging and modeling [Text] / M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, C. Pentland // Advances in Water Resources. — 2013. — Vol. 51. — Pp. 197–216.
32. Hazlett R.D. Simulation of capilary-dominated displacements in microtomographic images of reservoir rocks [Text] / R.D. Hazlett // Transport in Porous Media. — 1995. — Vol. 20. — Pp. 21–35.
33. Hilpert M. Pore-morphology-based simulation of drainage in totally wetting porous media [Text] / M. Hilpert, C.T. Miller // Advances in Water Resources. — 2001. — Vol. 24. — Pp. 243–55.
34. Borujeni A. T. Effects of image resolution and numerical resolution on computed permeability of consolidated packing using LB and FEM pore-scale simulations [Text] / A. T. Borujeni, N.M. Lane, K. Thompson, M. Tyagi // Computers & Fluids. — 2013. — Vol. 88. — Pp. 753–763.
35. Aslan E. Investigation of the Lattice Boltzmann SRT and MRT Stability for Lid Driven Cavity Flow [Text] / E. Aslan, I. Taymaz, A. C. Benim // International Journal of Materials, Mechanics and Manufacturing. — 2014. — Vol. 2. — No. 4. — Pp. 317-324.
36. Niu X. An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model [Text] / X. Niu, T. Munekata, Sh. Hyodoa, K. Suga // Journal of Power Sources. — 2007. — Vol. 172. — Pp. 542–552
37. Hua Y. A multiple-relaxation-time lattice Boltzmann model for the flow and heat transfer in a hydrodynamically and thermally anisotropic porous medium [Text] / Y. Hua, D. Li, S. Shu, N. Xiaodong // International Journal of Heat and Mass Transfer. — 2017. — Vol. 104. — Pp. 544–558.
38. Luo L.-S. Zhang Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations [Text] / L.-S. Luo, W. Liao, X. Chen, Y. Peng, W. Zhang // Physical Review E. — 2011. — Vol. 83. — 056710.
39. Lallemand P. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability [Text] / P. Lallemand, L.-S. Luo // Physical Review E. — 2000. — Vol. 60. — No. 6. — Pp. 6546–6562.
Review
For citations:
Trushin Yu.M., Zoshchenko O.N., Arsamakov M.S., Hairullin M.M. Application of “Computational Rock Physics” tool for carbonate reservoirs of Kharyaga field. PROneft. Professionally about Oil. 2022;7(4):152-164. (In Russ.) https://doi.org/10.51890/2587-7399-2022-7-4-152-164