Preview

PROneft. Professionally about Oil

Advanced search

Development of a geothermodynamic method for forecasting oil-promising areas in the rear zones of lithospheric subduction

https://doi.org/10.51890/2587-7399-2023-8-3-73-83

Abstract

The purpose of the article. The purpose of the article is to show the possibilities of the geothermodynamic method being developed for assessing various geological and geophysical parameters of the internal structure of the upper mantle in lithospheric subduction zones (at certain values of the angle of inclination and velocity of subduction, heat flux), which allow predicting oil and gas prospective areas in the sedimentary layer of the Earth’s crust at a certain distance from the deep–water trough of the subduction zone.

Materials and methods. Using the geothermodynamic method developed in the approximation of uniform constant-viscosity fluid constituting the mantle wedge asthenosphere between the upper surface of subducting lithospheric plate and the base of the overlying lithosphere the dissipative heat flux from the asthenosphere to the base of the overlying lithospheric plate and the maximum mantle wedge temperatures are calculated numerically with the help of a finite-difference technique. The advective and conductive 2D transfer of heat generated in the mantle wedge due to viscous friction at a given motion of subducting plate is taken into account.

Results. The result shows the maximum heat fluxes observed in the rear of subduction zones at the distances of 250–300 km from the trench are shown to sufficiently well fit to the model heat fluxes calculated here for the cases of subduction of Amur, Adriatic and Black-sea micro-plates thrusting under the Okhotsk, Eurasian and Scithian lithospheric plates at the velocities of ~10 mm·a–1, ~10 mm·a–1, and ~3 mm·a–1 respectively for the asthenosphere viscosity of 2·1023 Pa·s and the no-slip conditions at the asthenosphere — lithosphere boundaries. The latter viscosity estimation can be regarded as a mean viscosity of the mantle wedge viscosity.

Conclusion. The performed studies allow us to identify oil and gas promising regions for carrying out detailed geological exploration in them on the territory of the Russian Federation and other countries.

About the Authors

S. V. Gavrilov
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Russian Federation

Sergey V. Gavrilov — Dr. Sci. (Phys. and Math.), Chief Researcher

10, Bol. Gruzinskaya str., 123242, Moscow



A. L. Kharitonov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Russian Federation

Andrey L. Kharitonov — Cand. of Sci. (Phys. and Math.), Leader Researcher

(house): Haritonov-magnit@yandex.ru

4, Kaluga highway, 108840, Moscow



References

1. Uyeda S. Novyy vzglyad na Zemlyu [The New View of the Earth]. San Francisco: W.H. Freeman Company; 1978, 217 p.

2. Turcott D.L., Schubert J. Geodinamika [Geodynamics]. Moscow: Science; 1985, 732 p. (In Russ.).

3. Pollack B.N., Hurter S., Johnson J.R. The New Global Heat Flow Data Compilation. EOS Trans, AGU. 1990, no. 71, pp. 1604−1609.

4. Sawkins F.J. Sulfi de ore deposits in relation to plate tectonics. Journ. Geol. 1972, no. 80(4), pp. 377−397.

5. Gavrilov S.V., Abbott D.H. Termo-mekhanicheskaya model’ teplo- i massoperenosa v okrestnosti zony subduktsii [Thermo-mechanical model of heat- and mass-transfer in the vicinity of subduction zone]. Physics of the Earth, 1999, no. 35(12), pp. 967–976 (In Russ.).

6. Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford: Clarendon, 1961, 654 p.

7. Gavrilov S.V., Kharitonov A.L. O formirovanii anomal’nogo teplovogo potoka v basseyne Pannonia i v zone Vardar pri subduktsii Adriaticheskoy plity pod Evraziyskuyu plitu [On the formation of abnormal heat fl ow in the Pannonia basin and the Vardar zone during subduction of the Adriatic plate under the Eurasian plate]. International Journal of Professional Science. 2021, no. 9, pp. 27−39 (In Russ.). https://doi.org/10.54092/25421085_2021_9_27

8. Gavrilov S.V., Kharitonov A.L. O subduktsii Amurskoy mikroplity i konvektivnom mekhanizme vynosa dissipativnogo tepla i uglevodorodov iz mantiynogo klina v Okhotskom more k vostoku ot ostrova Sakhalin [On the subduction of the Amur micro plate and the convective mechanism of dissipative heat and hydrocarbons removal from the mantle wedge in the Sea of Okhotsk east of Sakhalin Island]. Bulletin of the Academy of Sciences of the Republic of Bashkortostan. 2022, no. 42(105), pp. 5−12 (In Russ.). https://doi.org/10.24412/1728-5283_2022_1_5-12

9. Gavrilov S.V., Kharitonov A.L. Otsenka neft egazovykh perspektiv Krymskogo poluostrova kak rezul’tat geodinamicheskogo modelirovaniya zony subduktsii Vostochno-Chernomorskoy plity pod litosferu Skifskoy plity [Assessment of oil and gas prospects of the Crimean Peninsula as a result of geodynamic modeling of the subduction zone of the East Black Sea plate under the lithosphere of the Scythian plate]. Scientifi c notes of the V.I. Vernardsky Crimean Federal University. Ser. Geography, Geology. 2021, no. 7(3), pp. 279−291 (In Russ.). https://doi.org/10.37279/2413-1717-2021-7-3-279-291

10. Gavrilov S.V., Kharitonov A.L. Geotermodinamicheskaya model’ predpolagaemoy paleozony litosfernoy subduktsii v rayone Chernomorskoy vpadiny i ee svyaz’ s metallogenicheskoy zonal’nostyu Krima i Kavkaza [Geothermodynamic model of the proposed paleozone of lithospheric subduction in the area of the Black Sea basin and its relationship with the metallogenic zonality of the Crimea and the Caucasus]. Regional geology and metallogeny. 2021, no. 87, pp. 4−16 (In Russ.). https://doi.org/10.52349/0869-7892-2021-87-04-16

11. Kharitonov A.L., Gavrilov S.V. Distribution of metallogenic zones of the Caucasus region originated as a result of the subduction of the lithosphere of the Tethys paleo-oceanic plate under the East-European paleo-continental plate. Acta Geodinamica et Geomaterialia. 2021, no. 18(2), pp. 199−208. https://doi.org/10.13168/AGG.2021/0014

12. Vakuer V. Morskaya geologiya [Marine geology]. Moscow: Mir, 1975, 200 p. (In Russ.)

13. MacKenzie D.P. Speculations on the consequences and causes of plate motion. Geophys. J. of Roy. Astron Soc. 1969, no. 18, pp. 1–32.

14. Zharkov V.N. Physics of the Earth’s Interiors. Duesseldorf: Lambert Academic Publishing, 2019, 438 p.

15. Smirnov Ya.B. (ed.). Karta teplovogo potoka territorii SSSR i sopredel’nykh regionov [Heat fl ow map of the territory of the USSR and adjacent areas]. Moscow: GUGK, 1980 (In Russ.)

16. Carminati E., Lustrino M., Doglioni C. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics, 2012, no. 579, pp. 173–192.

17. Lenkey L., Dovenyi P., Horvath F., Cloetingh S.A.P.L. Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Special Publication Series, 2002, no. 3, pp. 29–40.

18. Ushakov S.A., Galushkin Yu.I., Ivanov O.P. Priroda skladchatosti osadkov. na dne Chernogo morya v zone perekhoda k Krymu i Kavkazu [The nature of folding of the sediments at the Black Sea fl oor in the zone of transition to Crimea and Caucasus]. Reports of the USSR Academy of Sciences, 1977, no. 233(5), pp. 932–935 (In Russ.)

19. Timurziev A.I. Mif “energeticheskogo goloda” ot Habberta i puty vosproizvodstva resursnoy bazy Rossii na osnove realizatsii proekta “Glubinnaya neft” [Myth of power hunger from Habbert and ways of the decision of the global power problem on base of “Deep Oil” project realization]. Bureniye i neft’ [Drilling and Oil]. 2019, no. 1, pp. 12−20 (In Russ.).

20. Syvorotkin V.L. Glubinnaya degazatsiya Zemli i global’nye katastrophy [Deep degassing of the Earth and global catastrophes]. Moscow: Geoinformcenter, 2002, 250 p. (In Russ.).

21. Pavlenkova N.I. Rotacionno-fl uydnaya model’ global’nogo tektogeneza [Rotational fl uid model of global tectogenesis / In the book: Degassing of the Earth and the genesis of oil and gas fi elds (to the 100th anniversary of the birth of Academician P.N. Kropotkin). Edited by A.N. Dmitrievsky, B.M. Valyaev]. Moscow: GEOS, 2011, pp. 69−92 (In Russ.).

22. Seiful-Mulyukov R.B. Neft i gaz. Glubinnaya priroda i ee prikladnoe znachenie [Petroleum and gas: Inorganic abiotic nature and its applicability]. Moscow: Torus Press, 2012, 216 p. (In Russ.).

23. Ringwood A.E. Sostav i stroenie Zemli [Composition and structure of the Earth]. Moscow: Mir, 1984, 133 p. (In Russ.).

24. Gurevich G.S., Maksimov S.P. Skhematicheskaya karta neftenosnosti [Schematic map of oil capacity. Scale 1:120 000 000]. St. Petersburg: VSEGEI, 1987, 1 p. (In Russ.).

25. Glumov I.F., Gulyaev V.L., Senin B.V., Karnaukhov S.M. Regional’naya geologiya I perspektivy neftegazonosnosti Chernomorskoy glubokovodnoy vpadiny I prilegayushikh shel’fovikh zon [Regional geology and prospects of oil and gas potential of the Black Sea deepwater basin and adjacent shelf zones]. Moscow: Nedra, 2014, 181 p. (In Russ.).

26. Kelly D.S., Fruh-Green G.L. Abiogenic methane in deep-seated mid-ocean ridge environments: Insights from stable isotope analyses // Journal of Geophysical Research, 1999, no. 104, pp. 10439−10460.

27. Kiyosu Y. Hydrogen isotopic compositions of hydrogen and methane from some volcanic areas in Northeastern Japan // Earth and Planet. Sci. Lett, 1983, no. 62(1), pp. 41−52.

28. Maekawa H., Yamamoto K., Teruaki J., Ueno T., Osado Y. Serpentinite seamounts and hydrated mantle wedge in the Jzu-Bonin and Mariana forearc regions // Bull. Earth. Res. Inst. Univ. Tokyo, 2001, no. 76, pp. 355−366.


Review

For citations:


Gavrilov S.V., Kharitonov A.L. Development of a geothermodynamic method for forecasting oil-promising areas in the rear zones of lithospheric subduction. PROneft. Professionally about Oil. 2023;8(3):73-83. (In Russ.) https://doi.org/10.51890/2587-7399-2023-8-3-73-83

Views: 153


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7399 (Print)
ISSN 2588-0055 (Online)