Global and domestic experience in forecasting and analyzing the problems of working with well stock complicated by mechanical impurities recovery
https://doi.org/10.51890/2587-7399-2024-9-1-153-172
Abstract
Introduction. Modeling of sand production process is one of the priority directions in the field of exploitation of well stock complicated by mechanical impurities recovery. Due to the constant shift of the drainage zone in the direction of the drill sump, as well as a significant number of well stock located in the conditions of terrigenous rocks, the problem of mechanical impurities recovery is constantly increasing its relevance. The solution to this problem requires not only the development of a comprehensive strategy for the protection of downhole pumping equipment (DPE), but also effective prediction of the process of mechanical impurities recovery from the reservoir.
Purpose. The purpose of this paper is to review the technologies available in the world experience in predicting the process of mechanical impurities precipitation, as well as a review of ways to protect DPE from this type of complications.
Materials and methods. The materials considered in the article are: the results of modeling of the processes of fluid movement from the reservoir with joint removal of rock debris; the results of bench tests; the results of field data on the operation of the designated well stock.
Results. The world and domestic experience in the field of prediction and protection in the direction of mechanical impurities recovery from the formation was reviewed.
Conclusion. In the process of well operation, in order to improve the quality of the well stock complicated by the recovery of mechanical impurities, it is necessary to carry out timely effective prediction of rock destruction processes, as well as to build a strategy for protection of the DPE, ensuring the integrity of all units.
About the Authors
L. A. FarrakhovRussian Federation
Linar A. Farrakhov — Head of Technology Analysis
SciProfi les 2858456
3–5, Pochtamtskaya str., 190000, Saint Petersburg
K. K. Zaripova
Russian Federation
Kamila K. Zaripova — Master’s student of Oil and Gas Faculty
Saint Petersburg
References
1. Tananykhin D., Tcvetkov P., Kamoza V. Analysis and Recommendations of Sand Consolidation Methods to Limit Sand Production in Gas Wells // Journal of Physics: Conference Series, 2018. — № 1072(1). — 012022. https://doi.org/10.1088/1742-6596/1072/1/012022
2. Zhu H., Zhu J., Zhou Z., Rutter R., Zhang H.-Q. Wear and Its Effect on Electrical Submersible Pump ESP Performance Degradation by Sandy Flow: Experiments and Modeling, 2019. Day 4 Thu, May 09, 2019. https://doi.org/10.4043/29480-MS
3. Bonilla S.G.D., Chen H.-Y. Analytical and Numerical Studies of Sand Erosion in Electrical Submersible Pump (ESP) Systems // Proceedings of the 7th Unconventional Resources Technology Conference, 2019. https://doi.org/10.15530/urtec-2019-599
4. Zhu H., Zhu J., Rutter R., Zhang J., Zhang H.-Q. Sand Erosion Model Prediction, Selection and Comparison for Electrical Submersible Pump (ESP) Using CFD Method. Vol. 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics, 2018. https://doi.org/10.1115/FEDSM2018-83179
5. Zhu H., Zhu J., Zhou Z., Rutter R., Forsberg M., Gunter S., Zhang H.-Q. Experimental Study of Sand Erosion in Multistage Electrical Submersible Pump ESP: Performance Degradation, Wear and Vibration, Day 1 Tue, March 26, 2019. https://doi.org/10.2523/IPTC-19264-MS
6. Almajid H., Al Gamber S., Abou Zeid S., Ramos M. An Integrated Approach Utilizing ESP Design Improvements and Real Time Monitoring to Ensure Optimum Performance and Maximize Run LifeDay 3 Wed, November 13, 2019. https://doi.org/10.2118/197209-MS
7. Beck D., Nowitzki W., Shrum J. Electric Submersible Pump ESP Vibration Characteristics Under Wear Conditions,Day 2 Tue, May 14 2019. — P. 13–17. https://doi.org/10.2118/194388-MS
8. Якимов С.Б., Шпортко А.А. О влиянии концентрации абразивных частиц на наработку электроцентробежных насосов с рабочими ступенями из материала нирезист тип 1 на месторождениях ОАО «НК «Роснефть» // Территория Нефтегаз, 2016. — С. 84–98. [Yakimov S.B., Shportko A.A. The Impact of the concentration of abrasive particles on the runlife of ESP (Ni-resist type#1) Rosneft oilfield // Territory Neftegaz, 2016. — pp. 84–98]
9. Якимов С.Б., Шпортко А.А., Сабиров A.A., Булат А.В. Влияние концентрации абразивных частиц в добываемой жидкости на надежность работы электроцентробежных погружных насосов // Территория Нефтегаз, 2017. — С. 50–53 [Yakimov S.B., Shportko A.A., Sabirov A.A., Bulat A.V. The Impact of the concentration of abrasive particles in the produced fluid on the reliability of electric submersible pumps // Territory Neftegaz, 2017. — pp. 50–53]
10. Rakhimzhanova A., Thornton C., Amanbek Y., Zhao Y. Numerical simulations of sand production in oil wells using the CFD-DEM-IBM approach // Journal of Petroleum Science and Engineering, 2022. — Vol. 208, part C. — 109529. https://doi.org/10.1016/j.petrol.2021.
11. Zamani M.A.M., Knez D. A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction // Energies, 2021. — № 14(11). — 3130. https://doi.org/10.3390/en14113130
12. Song Y., Ranjith P.G., Wu B. Development and experimental validation of a computational fluid dynamics-discrete element method sand production model // Journal of Natural Gas Science and Engineering, 2020. — №73. — 103052. https://doi.org/10.1016/j.jngse.2019.103052
13. Wang H., Yang X., Zhang W., Sharma M.M. Predicting Sand Production in HPHT Wells in the Tarim Basin, Day 2 Tue, September 252018. — P. 24–26. https://doi.org/10.2118/191406-MS
14. Feder J. New Model Enhances Flux Management in Sand-Control Completions // Journal of Petroleum Technology, 2019. — № 71(10). — P. 70–72. https://doi.org/10.2118/1019-0070-JPT
15. Kozhagulova A., Minh N.H., Zhao Y., Fok S.C. Experimental and Analytical Investigation of Sand Production in Weak formations for Multiple Well Shut-Ins // Journal of Petroleum Science and Engineering, 2020. — № 195. https://doi.org/10.1016/j.petrol.2020.107628
16. Eshiet K.I.-I., Yang D., Sheng Y. Computational study of reservoir sand production mechanisms // Geotechnical Research, 2019. — № 6(3). — P. 177–204. https://doi.org/10.1680/jgere.18.00026
17. Kolla S.S., Xu B., Nadeem A., Luo Q., Shirazi S.A., Sen S. Utilizing Artificial Intelligence for Determining Threshold Sand Rates from Acoustic Monitors. Day 4 Thu, October 29, 2020. https://doi.org/10.2118/201768-MS
18. Lezhnev K., Roshchektaev A., Pashkin V. Coupled Reservoir — Well Model of Sand Production Processes. Day 3 Thu, October 24, 2019. — P. 22–24. https://doi.org/10.2118/196883-M
19. Nikonov E., Goridko K., Verbitsky V. Study of the submersible sand separator in the field of centrifugal forces for increasing the artificial lift efficiency // Society of Petroleum Engineers — SPE Russian Petroleum Technology Conference, 2018. https://doi.org/10.2118/191544-18rptc-ms
20. Якимов С.Б. Сепараторы песка для защиты погружных насосов. Текущая ситуация и перспективы применения технологии // Территория Нефтегаз, 2014. — С. 44–58. [Yakimov S.B., Sand filters for the protection of submersible pumps. Current solution and prospects for using technology // Territory Neftegaz, 2014. — pp. 44–58]
21. Zhou B., Dong C., Gan L., Liu Y., Xu H., Li Q. Experimental simulation and new prediction model of sand control screen erosion performance in weakly consolidated heterogeneous reservoirs // Journal of Petroleum Science and Engineering, 2022. — № 215. — 110587. https://doi.org/10.1016/j.petrol.2022.110587
22. Shishlyannikov D., Zverev V., Ivanchenko A., Zvonarev I. Increasing the Time between Failures of Electric Submersible Pumps for Oil Production with High Content of Mechanical Impurities // Applied Sciences, 2021. — № 12(1). — P. 64. https://doi.org/10.3390/app12010064
23. Jackson S. R., Gundemoni B., Barth P. Sand Control in Corrosive and Erosive Downhole Conditions at High Temperatures. All Days, 2016. — P. 25–27. https://doi.org/10.2118/182278-MS
24. Boudi A. A. ESP Suffers Erosion Due to Sand Production in a Mature Onshore Oil Field. Day 1 Wed, November 30, 2016. https://doi.org/10.2118/184179-MS
25. Shakirov A., Koropetsky V., Alexeev Y., Agnaev, Z. Ultra-High-Speed ESP Solution for High Sand Production — A Real Case Study. Day 1 Wed, November 28, 2018, P. 28–29. https://doi.org/10.2118/192472-MS
26. Ben Mahmud H., Leong V.H., Lestariono Y. Sand production: A smart control framework for risk mitigation // Petroleum, 2020. — № 6(1). — P. 1–13. https://doi.org/10.1016/j.petlm.2019.04.002
27. Wang H., Sharma M.M. The Role of Elasto-Plasticity in Cavity Shape and Sand Production in Oil and Gas Wells // SPE Journal, 2019. — № 24(02). P. 744–756. https://doi.org/10.2118/187225-PA
28. Ehihamen P. Cassandra: A Model and Simulator Developed for Critical Drawdown Estimation in Unconsolidated Reservoirs. Day 2 Tue, August 06, 2019. https://doi.org/10.2118/198803-MS
29. Salahi A., Dehghan A. N., Sheikhzakariaee S. J., Davarpanah A. Sand production control mechanisms during oil well production and construction // Petroleum Research, 2021. — № 6(4). — P. 361–367. https://doi.org/10.1016/j.ptlrs.2021.02.005
30. Wang H., Gala D.P., Sharma M.M. Effect of Fluid Type and Multiphase Flow on Sand Production in Oil and Gas Wells. SPE Journal, 2019. — № 24(02). — P. 733–743. https://doi.org/10.2118/187117-PA
31. Li X., Feng Y., Gray K.E. A hydro-mechanical sand erosion model for sand production simulation // Journal of Petroleum Science and Engineering, 2018. — № 166. — P. 208–224. https://doi.org/10.1016/j.petrol.2018.03.042
32. Wang M., Feng Y.T., Zhao T.T., Wang Y. Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method // Engineering Computations (Swansea, Wales), 2019. — № 36(2). — P. 691–706. https://doi.org/10.1108/EC-02-2018-0093
33. Shabdirova A., Minh N.H., Zhao Y. A sand production prediction model for weak sandstone reservoir in Kazakhstan // Journal of Rock Mechanics and Geotechnical Engineering, 2019. — № 11(4). — P. 760–769. https://doi.org/10.1016/j.jrmge.2018.12.015
34. Honari S., Seyedi Hosseininia E. Particulate Modeling of Sand Production Using Coupled DEM-LBM. Energies, 2021. — № 14(4). — P. 906. https://doi.org/10.3390/en14040906
35. Subbiah S.K., Samsuri A., Mohamad-Hussein A., Jaafar M.Z., Chen Y.R., Kumar R.R. Root cause of sand production and methodologies for prediction // Petroleum, 2021. — №7(3). — P. 263–271. https://doi.org/10.1016/j.petlm.2020.09.007
36. Timonin A., Mollaniyazov E. Locating and Quantifying Downhole Sand Production with Wireline Sand Detection Tool and Examples of Application in Wells Offshore Caspian Sea. Day 2 Tue, October 22, 2019. — № 72(10). — P. 73–74. https://doi.org/10.2118/198566-MS
37. Pandya D.A., Dennis B.H., Russell R.D. A computational fluid dynamics based artificial neural network model to predict solid particle erosion // Wear, 2017. — № 378–379. — P. 198–210. https://doi.org/10.1016/j.wear.2017.02.028
38. Zhang Y., Xu X. Solid particle erosion rate predictions through LSBoost // Powder Technology, 2021. — № 388. — P. 517– 525. https://doi.org/10.1016/j.powtec.2021.04.072
39. Pirouzpanah, S., Patil, A., Chen, Y., & Morrison, G. Predictive Erosion Model for Mixed Flow Centrifugal Pump // Journal of Energy Resources Technology, 2019. — № 141(9). https://doi.org/10.1115/1.4043135
40. Nasyrova M.I., Kulakov P.A. Influence of the shape of quartz sand particles factor on single particle erosion damage // Journal of Physics: Conference Series, 2019. — № 1384(1). https://doi.org/10.1088/1742-6596/1384/1/012032
41. Kanesan D., Mohyaldin M.E. А review: the effects of particle properties on solid particle erosion for oil and gas pipelines applications // Journal of Engineering and Applied Sciences, 2018. — № 13(18).
42. Parsi M., Najmi K., Najafifard F., Hassani S., McLaury B.S., Shirazi S.A. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications // Journal of Natural Gas Science and Engineering, 2014. — № 21. P. 850–873. https://doi.org/10.1016/j.jngse.2014.10.001
43. Kovalchuk M.S., Poddubniy D.A. Diagnosis of Electric Submersible Centrifugal Pump. IOP // Conference Series: Earth and Environmental Science, 2018. — № 115(1). — 012026. https://doi.org/10.1088/1755-1315/115/1/012026
44. Минченко Д.А., Якимов С.Б., Носков А.Б., Косилов Д.А., Былков В.В., Ивановский В.Н., Сабиров А.А., Булат А.В. Проект повышения износоустойчивости газосепараторов электроцентробежных насосов в ПАО «НК «Роснефть» // Нефтяное Хозяйство, 2020. — С. 62–65. https://doi.org/10.24887/0028-2448-2020-11-62-65. [Minchenko D.A., Yakimov S.B., Noskov A.B., Kosilov D.A., Bylkov V.V., Ivanovskiy V.N., Sabirov A.A., Bulat A.V. Project for increasing the wear resistance of ESP gas separators, Rosneft oilfield // Oil Industry, 2020. — pp. 62–65].
45. Kanesan D., Mohyaldinn M.E., Ismail N.I., Chandran D., Liang C. J. An experimental study on the erosion of stainless steel wire mesh sand screen using sand blasting technique // Journal of Natural Gas Science and Engineering, 2019. — № 65. — P. 267–274. https://doi.org/10.1016/j.jngse.2019.03.017
46. Ahad N.A., Jami M., Tyson S. A review of experimental studies on sand screen selection for unconsolidated sandstone reservoirs // Journal of Petroleum Exploration and Production Technology, 2020. — № 10(4). — P. 1675–1688. https://doi.org/10.1007/s13202-019-00826-y
47. Darihaki F., Hajidavalloo E., Ghasemzadeh A., Safi an G.A. A localized sand erosion prediction approach for multiphase flow in wells: application for sudden-expansions // Particulate Science and Technology, 2021. — № 39(8). — P. 954–970. https://doi.org/10.1080/02726351.2021.1871990
Review
For citations:
Farrakhov L.A., Zaripova K.K. Global and domestic experience in forecasting and analyzing the problems of working with well stock complicated by mechanical impurities recovery. PROneft. Professionally about Oil. 2024;9(1):153-172. (In Russ.) https://doi.org/10.51890/2587-7399-2024-9-1-153-172