Preview

PROneft. Professionally about Oil

Advanced search

Main features of modeling terrigenous deposits in East-Siberia using the example of the Hamakinsky horizon

https://doi.org/10.51890/2587-7399-2021-6-4-32-42

Abstract

Background. The article considers the results of updating the geological model of the khamakinskii horizon reservoirs of the Chayandinskoe oid and gas field. The main aim is project the production of the oil rims and form a positive business case of the project.

Materials and methods. Conceptual sedimentary model bases on the core of the 14 wells. Updating of the petrophysical model is the key to identify post-sedimentary transformations (like anhydritization and halitization) and the opportunity to correct the permeability trend. The tectonic pattern of the horizon based on the interpretation of 3D seismic data. There are two groups of faults were identified: certain and possible. Neural networks algorithm uses for a creating the predictive maps of anhydritization, which are used in the geological model.

Results. Estuary sands influenced by fluvial and tidal processes dominate the khamakinskii horizon. The reservoir is irregular vertically: at the base of the horizon, there are sandstones of the delta front and there are alluvial valley with fluvial channels in the middle and upper parts. Eustary sands eroded by incised valleys (alluvial channels). According to the core and thin section analysis, the main uncertainty is sedimentary transformations of reservoir. It affects the net thickness and then the volume of oil in productive wells. 3D geological model includes the trends of anhydritization and halitization over the area, which makes it possible to obtain a more accurate production forecast.

Conclusion. As part of the probability estimate of oil reserves, the main geological parameters that affect the volume of reserves were identified. Pilot project is planning to remove geological and technical uncertainties.

About the Authors

Dmitriy V. Kozikov
Gazpromneft STC LLC
Russian Federation


Mikhail A. Vasiliev
Gazpromneft STC LLC
Russian Federation


Konstantin V. Zverev
Gazpromneft STC LLC
Russian Federation


Andrei N. Lanin
Gazpromneft STC LLC
Russian Federation


Shafkat A. Nigamatov
Gazpromneft STC LLC
Russian Federation


Sergey A. Andronov
Gazpromneft STC LLC
Russian Federation


References

1. Мельников Н.В. Венд-кембрийский соленосный бассейн Сибирской платформы (Стратиграфия, история развития). — Новосибирск: Изд-во СО РАН, 2009. — 148 с.

2. Постникова О.В. Палеогеографические и палеогеодинамические условия формирования рифей-вендского осадочного бассейна юга Сибирской платформы в связи с его нефтегазоносностью // Геология нефти и газа. — 2008. — № 1. — С. 8–15.

3. Нигаматов Ш.А., Исмагилова Л.Р., Бощенко А.Н. Прогноз зон засолонения песчаников ботуобинского горизонта на примере Чаяндинского месторождения (Восточная Сибирь) // PROНЕФТЬ. Профессионально о нефти. — 2019. — № 3 (13). — С. 35–40.

4. Kohonen T. Self-organizing maps: Springer-Verlag. — New York, Inc., 1995.

5. Neff D.B., S.A. Runnestrand and E.L. Butler Multi-attribute seismic waveform classification, Phillips Petroleum Company, USA Patent 6223126, 2001.

6. Priezzhev I., Shmaryan L., Bejarano G. Non-linear multi trace seismic inversion using neural network and genetic algorithm — “Genetic Inversion”: Annual Meeting St Petersburg. EAGE, Extended Abstracts, 2008.

7. Priezzhev I., Scollard A., Lu Z. Regional production prediction technology based on gravity and magnetic data from the Eagle Ford formation. — Texas, USA, Denver SEG, 2014.

8. Tikhonov A.N. and Arsenin V.Y. Solutions of ill-posed problems. Washington D.C., V H Winston and Sons, 1977.

9. Priezzhev I.I., Veeken P.Ch., Egorov S.V., Strecker U. Direct prediction of petrophysical and petroelastic reservoir properties from seismic and well-log data using nonlinear machine learning algorithms // The Leading Edge. — 2019. — Vol. 38. — № 12. — p. 949–958.

10. Strecker U., Mahmoud I., Priezzhiev I., Zeug M. Chancing methods to predict porosity in a middle eastern carbonate reservoir from full-function machine-learning neural networks, seismic attributes and inversions // AAPG GeoTechnology Workshop. — Abu Dhabi, January 28–29, 2020.

11. Приезжев И.И. Нейронные сети нового поколения на основе теоремы Колмогорова и их применение для прогнозно-инверсионных построений // ГеоЕвразия 2020. 3–5 февраля 2020, Москва.

12. Приезжев И.И., Васильев М.А., Петренко Е.Н. Построение прогнозных карт эффективных газонасыщенных толщин по форме сейсмического сигнала на основе нейронных сетей Кохонена // Геофизика. — 2020. — № 6. — С. 40–44.


Review

For citations:


Kozikov D.V., Vasiliev M.A., Zverev K.V., Lanin A.N., Nigamatov Sh.A., Andronov S.A. Main features of modeling terrigenous deposits in East-Siberia using the example of the Hamakinsky horizon. PROneft. Professionally about Oil. 2021;6(4):32-42. (In Russ.) https://doi.org/10.51890/2587-7399-2021-6-4-32-42

Views: 302


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7399 (Print)
ISSN 2588-0055 (Online)