Preview

PROneft. Professionally about Oil

Advanced search

Numerical study of the imaging capabilities of the pre-Jurassic complex of the Tomsk and Novosibirsk regions

https://doi.org/10.51890/2587-7399-2021-6-4-71-80

Abstract

Background and aim. The complexity of the structures of the Paleozoic deposits of Western Siberia requires the use of specialized methods for seismic data processing. However, the standard time processing procedures are still used in Western Siberia. Therefore, in this work, the goal is to study of seismic processing procedures for the construction of high-quality images of the pre-Jurassic complex in Western Siberia.

Materials and methods. A comparative analysis of time and depth processing was carried out in the paper on realistic synthetic data and models from Western Siberia containing the pre-Jurassic complex. Numerical examples are calculated for synthetic data obtained from two realistic seismic models. To create the first model, various geological and geophysical data from the Tomsk region are used. The most difficult areas of the Paleozoic in this model are steeply dipping carbonate structures and intrusive formations with steep slopes and outcropping to the erosion surface. Another model was built based on the seismic data processing results in the area of the Maloichskoye and Verkh-Tarskoye fields in the Novosibirsk region. Based on these data, the main horizons and a system of sub-vertical faults, characteristic of the pre-Jurassic deposits of the Novosibirsk region, were identified. Seismic data processing was carried out with an emphasis on the possibility of object-oriented migration.

Results. It is shown that the time processing of seismic data is insufficient and the need for deep processing to construct kinematically correct images of pre-Jurassic deposits. We also compared migration algorithms based on Gaussian beams and found that object-oriented migration gives the best quality results.

About the Authors

Maxim I. Protasov
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences (IPGG SB RAS); Novosibirsk State University
Russian Federation


Dmitry A. Litvichenko
Gazpromneft STC LLC
Russian Federation


Vadim V. Lisitsa
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences (IPGG SB RAS)
Russian Federation


Dmitriy M. Vishnevskiy
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences (IPGG SB RAS)
Russian Federation


References

1. Запивалов Н.П., Братеньков А.А. Верх-Тарская нефть не умирает // Нефть и газ Сибири. — 2015. — № 1. — С. 44–45.

2. Калинин А.Ю., Локтионова О.А. Сейсмогеологическая модель верхнеюрских отложений севера Новосибирской области (на примере Верх-Тарского месторождения) // Проблемы геологии и освоения недр. — 2018. — Т. 1. — C. 263–265.

3. Конторович В.А., Калинина Л.М., Калинин А.Ю., Канакова К.И., Соловьев М.В. Сейсмогеологические модели палеозойских комплексов и нефтегазоперспективных объектов юго-востока Западной Сибири (Новосибирская область) // Технологии сейсморазведки. — 2017. — № 3. — С. 85–95.

4. Hill N.R. Prestack Gaussian-beam depth migration // Geophysics. — 2001. — Vol. 66. — P. 1240–1250.

5. Levander A.R. Fourth-order finite-difference P-SV seismograms // Geophysics. — 1988. — Vol. 53. — P. 1425–1436.

6. Popov M.M. Ray theory and Gaussian beam for geophysicists // EDUFBA, Salvador-Bahia. — 2002. –156 p.

7. Protasov M.I., Tcheverda V.A. True amplitude imaging by inverse generalized Radon transform based on Gaussian beam decomposition of the acoustic Green’s function // Geophysical Prospecting. — 2011. — V. 59. — P. 197–209.

8. Protasov M.I., Tcheverda V.A., Pravduhin A.P. 3D true-amplitude anisotropic elastic Gaussian beam depth migration of 3D irregular data // Journal of seismic exploration. — 2019. — V. 28. — P. 121–146.

9. Protasov M., Tcheverda V., Lisitsa V., Reshetova G., Shilikov V., Ledyaev A., et al. 3D Scattering Imaging in the Time Domain Based on Asymmetric Beam Summation // Extended Abstracts, 81th EAGE Conference and Exhibition. — 2019. — P. 1–5.

10. Virieux J., Calandra H., Plessix R.-E. A review of the spectral, pseudo-spectral, finite-difference and finite-element modeling techniques for geophysical imaging // Geophysical Prospecting. — 2011. — V. 59. — P. 794–813.

11. Voronovicheva E.M., Litvichenko D.A., Pavlovskiy Y.V., Shevchenko A.A., Romancheko I.V., Lisitsa V.V., et al. 3D Seismic Modeling for Studying the Pre-Jurassic Complex of the Tomsk Region // EAGE Extended Abstracts, Geomodel. — 2019. — P. 1–6.


Review

For citations:


Protasov M.I., Litvichenko D.A., Lisitsa V.V., Vishnevskiy D.M. Numerical study of the imaging capabilities of the pre-Jurassic complex of the Tomsk and Novosibirsk regions. PROneft. Professionally about Oil. 2021;6(4):71-80. (In Russ.) https://doi.org/10.51890/2587-7399-2021-6-4-71-80

Views: 103


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7399 (Print)
ISSN 2588-0055 (Online)