Preview

PROneft. Professionally about Oil

Advanced search

Review of original methods for reservoir simulation of oil and gas-oil fields based on CRM family models

https://doi.org/10.51890/2587-7399-2025-10-3-44-59

Abstract

Introduction and aim. In a situation where the structure of oil and gas reserves is becoming more complex, there is an increased need for prompt development management based on mathematical modeling and for reducing the uncertainty of modeling results. In this regard, the development of modeling methods based on the analytical physically meaningful CRM (Capacitance Resistance Model) material balance model is relevant. The purpose of this article is to provide an overview of the original methods based on the CRM model for solving the problems that arise during the development of oil and gas-oil deposits.

Materials and methods. The studies were conducted using actual and synthetic data. The developed methods are based on the analytical model of the CRM material balance and its modifications, and cover a wide range of practical tasks.

Results. The presented methods allow to solve the following tasks, namely: the separation of production and injection by reservoirs, modeling of the operation of wells of the sub-gas zone, mapping of reservoir pressure, forecasting of water cut, and accounting for geological and technological measures. Also given are methods that allow to increase the cost-effectiveness in solving optimization problems.

Conclusion. The developed methods are recommended for use in the development of oil and gas-oil deposits, including for solving operational tasks. CRM modeling, taking into account its functionality, can play a key role in the technology of multi-level modeling, which is aimed at improving the quality of decisions made in the development of fields.

About the Authors

Sergey V. Stepanov
LLC “Tyumen Petroleum Research Center”
Russian Federation

Sergey V. Stepanov — Dr. Sci. (Tech.), Senior expert

42, M. Gorkogo str., 625048, Tyumen



Aleksandr A. Ruchkin
LLC “Tyumen Petroleum Research Center”
Russian Federation

Aleksander A. Ruchkin — Cand. Sci. (Tech.), Senior expert

Tyumen



Aleksandr D. Bekman
LLC “Tyumen Petroleum Research Center”
Russian Federation

Aleksander D. Bekman — Cand. Sci. (Phys.-Math.), Senior project engineer

Tyumen



Nikita O. Shevtsov
LLC “Tyumen Petroleum Research Center”
Russian Federation

Nikita O. Shevtsov — Senior specialist

Tyumen



Dmitry V. Zelenin
LLC “Tyumen Petroleum Research Center”
Russian Federation

Dmitry V. Zelenin — Manager

Tyumen



References

1. Pospelova T.A., Stepanov S.V., Strekalov A.V., Sokolov S.V. Matematicheskoye modelirovaniye dlya prinyatiya resheniy po razrabotke mestorozhdeniy [Mathematical modeling for decision-making on field development]. Moscow: Nedra PH, 2021. 427 p. (In Russ.)

2. Bahrami P., Sahari Moghaddam F., James L.A. A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering. Energies. 2022, no. 15, p. 5247. https://doi.org/10.3390/en15145247

3. Stepanov S.V., Bekman A.D., Ruchkin A.A., Pospelova T.A. Soprovozhdeniye razrabotki neQ yanykh mestorozhdeniy s ispol’zovaniyem modeley CRM [Supporting the development of oil fi elds using CRM models]. Tyumen: IPC Express. 2021. 300 p. (In Russ.) https://doi.org/10.54744/TNSC.2021.53.50.001

4. Holanda R.W.D., Gildin E., Jensen J.L., Lake L.W., Kabir C.S. A State-of-the-Art Literature Review on Capacitance Resistance Models for Reservoir Characterization and Performance Forecasting. Energies, 2018, no. 11, p. 3368. https://doi.org/10.3390/en11123368.

5. Sayarpour M. Development and Application of Capacitance-Resistive Models to Water/CO2 Floods. Ph.D. Dissertation. The University of Texas at Austin, Austin, Texas, 2008.

6. Zelenin D.V., Stepanov S.V., Bekman A.D., Ruchkin, A.A. Studying the mechanisms for accounting for the well interference using various methods of mathematical modeling. NeQ epromyslovoye delo [Oilfi eld Engineering]. 2019, no. 12, pp. 39–45. (In Russ.) https://doi.org/10.30713/0207-2351-2019-12(612)-39-45

7. Ruchkin A.A., Stepanov S.V., Knyazev A.V., Stepanov A.V., Korytov A.V., Avsyanko I.N. Applying crm model to study well interference. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2018, vol. 4, no. 4, pp. 148–168. (In Russ.) https://doi.org/10.21684/2411-7978-2018-4-4-148-168

8. Stepanov S.V., Sokolov S.V., Ruchkin A.A., Stepanov A.V., Knyazev A.V., Korytov A.V. Considerations on Mathematical Modeling of Producer-Injector Interference. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2018, vol. 4, no. 3, pp. 146–164. (In Russ.) https://doi.org/10.21684/2411-7978-2018-4-3-146-164

9. Shevtsov N. O., Stepanov S. V., Pospelova T. A. The study of the predictive ability of numerical and analytical models (the case of mutual well impact evaluation”. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2020, vol. 6, no. 3(23), pp. 131–142. (In Russ.) https://doi.org/10.21684/2411-7978-2020-6-3-131-142

10. Stepanov S.V., Glukhikh I.N., Arzhilovsky A.V. The concept of multilevel modeling as a basis for a decision support system for brown oil fi eld development. NeQ yanoye khozyaystvo [Oil Industry]. 2023, no. 12, pp. 112–117. (In Russ.) https://doi.org/10.24887/0028-2448-2023-12-112-117

11. Bekman A. D., Stepanov S. V., Ruchkin A. A., Zelenin D. V. A new algorithm for finding CRM-model coefficients. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2019, vol. 5, no. 3, pp. 164–185. (In Russ.) https://doi.org/10.21684/2411-7978-2019-5-3-164-185

12. Tyrsin A.N., Stepanov S.V., Ruchkin A.A., Bekman A.D. Increasing the Reliability of Well Interaction Modeling for the Analysis of the Efficiency of the Flooding System. Matematicheskoye modelirovaniye [Mathematical modeling]. 2023, no. 15, pp. 1092–1103. (In Russ.) https://doi.org/10.1134/S2070048223060170.

13. Stepanov S.V., Tyrsin A.N., Ruchkin A.A., Pospelova T.A. Using entropy modeling to analyze the effectiveness of the waterflooding system. NeQ yanoye khozyaystvo [Oil Industry]. 2020. vol. 06, pp. 62–67. (In Russ.) https://doi.org/10.24887/0028-2448-2020-6-62-67.

14. Tyrsin A.N. Vektornoye entropiynoye modelirovaniye mnogomernykh stokhasticheskikh sistem [Vector entropy modeling of multidimensional stochastic systems]. Moscow: Science, 2022. 231 p. (In Russ.)

15. Altunin A.E., Semukhin M.V., Stepanov S.V. Using the material balance and the fuzzy sets theory to solve the problems of recovery separation at simultaneous development of several reservoirs. NeQ yanoye khozyaystvo [Oil Industry]. 2012, no. 5, pp. 56–60. (In Russ.)

16. Stepanov S.V., Vasiliev V.V., Altunin A.E. Improved analytical method for splitting production and injection among reservoirs during commingled development. NeQ yanoye khozyaystvo [Oil Industry]. 2015, no. 11, pp. 27–31. (In Russ.)

17. Stepanov S.V., Ruchkin A.A., Stepanov A.V. Analytical method for splitting liquid and oil production among reservoirs during commingled development. NeQ epromyslovoye delo [Oilfi eld Engineering]. 2018, no. 2, pp. 10–17. (In Russ.) https://doi.org/10.30713/0207-2351-2018-2-10-17

18. Sokolov S.V. Praktika proyektirovaniya, analiza i modelirovaniya razrabotki neQ yanykh mestorozhdeniy [Practice of designing, analyzing, and modeling the development of oil fields]. St. Petersburg: Nauka, 2008, 200 p. (In Russ.)

19. Bekman A.D. New method for splitting production and injection in joint wells using modifi ed crm model. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2021, vol. 7, no. 3, pp. 106–122. (In Russ.) https://doi.org/10.21684/2411-7978-2021-7-3-106-122

20. Mamghaderi A., Bastami A., Pourafshary P. Optimization of waterflooding performance in a layered reservoir using a combination of capacitance-resistive model and genetic algorithm method. J. Energy Resour. Technol. Mar 2013, no. 135(1), pp. 013102–01311. https://doi.org/10.1115/1.4007767

21. Moreno G.A. Multilayer capacitance-resistance model with dynamic connectivities. J. Pet. Sci. Eng. Sep 2013, pp. 298–307. https://doi.org/10.1016/j.petrol.2013.08.009

22. Mamghaderi A., Pourafshary P. Water flooding performance prediction in layered reservoirs using improved capacitance-resistive model. J. Pet. Sci. Eng. 2013, no. 108, pp. 107–117. https://doi.org/10.1016/j.petrol.2013.06.006

23. Ivantsov N.N., Stepanov S.V., Stepanov A.V., Bukhalov I.S. Assessment of Possibilities of Hydrodynamic Simulators to Imitate the Development of High-viscous Oil Fields. Part 1. Coning. NeQ epromyslovoye delo [Oilfi eld Engineering]. 2015, no. 6, pp. 52–58. (In Russ.)

24. Mjaavatten A. et al. A Model for Gas Coning and Rate — Dependent Gas Oil Ratio in an Oil-Rim Reservoir. SPE 102390. 2006. https://doi.org/10.2118/102390-MS

25. Stepanov S.V., Stepanov A.V., Yeletsky S.V. Numerical and analytical approach to solving the problem of quick estimation of oil well operation under conditions of gas coning. NeQ epromyslovoye delo [Oilfi eld Engineering]. 2013, no. 2, pp. 53–58. (In Russ.)

26. Stepanov S.V., Grinchenko V.A., Stepanov A.V., Anurev D.A., Dolgov I.A. A case study of Verkhnechonskoye fi eld to support the development of the gas-cap zone using various types of flow simulation. Nauchno-tekhnicheskiy vestnik OAO NK «RosneQ ’» [RosneQ Scientifi c and Technical Bulletin]. 2013, no. 4, pp. 38-45. (In Russ.)

27. Stepanov S.V., Smirnov A.S. Computation and parametric analysis of the operation of oil wells in the under-gas-cap zone of the Verkhnechonskoye field based on a numerical-analytical model. NeQ yanoye khozyaystvo [Oil Industry]. 2016, no. 10, pp. 72–77. (In Russ.)

28. Bekman A. D., Ruchkin A. A. Method for assessing well interference at under-gas cap zone using CRM material balance model. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2024, vol. 10, no. 1(37), pp. 155–173. (In Russ.) https://doi.org/10.21684/2411-7978-2024-10-1-155-173

29. Barenblatt G.I., Entov V.M., Ryzhik V.M. Dvizheniye zhidkostey i gazov v prirodnykh plastakh [Movement of liquids and gases in natural reservoirs]. Moscow. Nedra, 1984. 211 p. (In Russ.)

30. Bekman A.D., Zelenin D.V. Application of advanced CRMP for reservoir pressure mapping. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2021, vol. 7, no. 4(28), pp. 163–180. (In Russ.) https://doi.org/10.21684/2411-7978-2021-7-4-163-180

31. Bekman A. D. Improving the quality of reservoir pressure gridding by regularizing the CRMP-TM history matching problem. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2022, vol. 8, no. 4(32), pp. 125–143. (In Russ.) https://doi.org/10.21684/2411-7978-2022-8-4-125-143

32. Bekman A. D. The New CRM-Like Two-Phase Proxy Model for the Oil Field Development Process. Matematicheskoye modelirovaniye [Mathematical modeling]. 2023, no. 15, pp. 999–1007. (In Russ.) https://doi.org/10.1134/S2070048223060078

33. Bekman A.D., Pospelova T.A., Zelenin D.V. A new approach to water cut forecasting based on results of capacitance resistance modeling. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2020, vol. 6, no. 1(21), pp. 192–207. (In Russ.) https://doi.org/10.21684/2411-7978-2020-6-1-192-207

34. Gubanova A.E., Khabibullin B.A., Orlov D.M., Koroteev D.A. Modifi tsirovannaya model’ material’nogo balansa CR tipa dlya prognoza dobychi uglevodorodov s uchotom geologo-tekhnologicheskikh meropriyatiy [Modified CR-Type Material Balance Model for Well Production Forecasts in Case of Well Treatments]. SPE-206511-MS. 2021. https://doi.org/10.2118/206511-MS

35. Bekman A.D. Accounting for stimulation treatments in modeling of oil reservoirs development using the material balance method. Matematicheskoye modelirovaniye [Mathematical modeling]. 2022, no. 15, pp. 13–22. (In Russ.) https://doi.org/10.1134/S2070048223010027

36. Shevtsov N.O., Stepanov S.V. Development of the Material Balance Model for Consideration of Wells Productivity Index Changes. Matematicheskoye modelirovaniye [Mathematical modeling]. 2022, no. 14, pp. 691–699. (In Russ.) https://doi.org/10.20948/mm-2022-02-01

37. Shevtsov N.O., Modifi cation of the Capacitance Resistive Model (CRM) for solving optimization problems of oil fi elds development. NeQ epromyslovoye delo [Oilfi eld Engineering]. 2023, no. 11(659), pp. 20–27. (In Russ.) https://doi.org/10.33285/0207-2351-2023-11(659)-20-27

38. Arzhilovsky A.V., Zelenin D.V., Ruchkin A.A., Pospelova T.A., Bekman A.D. On separation of EOR /well stimulation effects with consideration of injection eff ect. NeQ yanaya provintsiya [Oil Province]. 2020, no. 3, pp. 99–112. (In Russ.) https://doi.org/10.25689/NP.2020.3.99-112

39. Stepanov S.V., Arzhilovsky A.V. Improving the quality of mathematical modeling in solving problems of supporting the development of oil fields. NeQ yanoye khozyaystvo [Oil Industry]. 2023, no. 4, pp. 56–60. (In Russ.) https://doi.org/10.24887/0028-2448-2023-4-56-60

40. Bekman A.D., Stepanov S. V., Zelenin D. V. On the question of the regularities in the transformation of the parameters of the relative phase permeability with a change in the dimension of the oil reservoir model. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoye modelirovaniye / NeQ ’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2023, vol. 9, no. 3(35), pp. 148–160. (In Russ.) https://doi.org/10.21684/2411-7978- 2023-9-3-148-160

41. Shevtsov N.O., Stepanov S.V. Research of the relationship of wells interaction coefficients in the CRM with the hydraulic conductivity field within the framework of a hierarchical modeling approach. NeQ epromyslovoye delo [Oilfield Engineering]. 2024, no. 7(667), pp. 20–25. (In Russ.)

42. Stepanov S.V., Lopatina E.S., Zagorovsky M.A., Zubareva I.A. Multiscale modeling of high-viscous oil production during injection of water and polymer solution. Avtomatizatsiya i informatizatsiya TEK [Automation and informatization of the fuel and energy complex]. 2024, no. 7(612), pp. 51–60. (In Russ.)


Review

For citations:


Stepanov S.V., Ruchkin A.A., Bekman A.D., Shevtsov N.O., Zelenin D.V. Review of original methods for reservoir simulation of oil and gas-oil fields based on CRM family models. PROneft. Professionally about Oil. 2025;10(3):44-59. (In Russ.) https://doi.org/10.51890/2587-7399-2025-10-3-44-59

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-7399 (Print)
ISSN 2588-0055 (Online)